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ABSTRACT 

A limited amount of training datasets in deep learning research could impact the accuracy of the resulting 

models. This situation can cause overfit, so the model cannot work correctly. Conditional Generative 

Adversarial Network (CGAN) was introduced to generate synthetic data by considering certain conditions. 

This study aims to generate additional synthetic training datasets to improve the accuracy of the object 

segmentation model of images. Firstly, we evaluated CGAN-based dataset generator accuracy against 

several open datasets. Then, we applied the generator to train two object segmentation models, i.e., FCN 

and CNN U-Net. Our evaluation shows that CGAN can generate synthetic datasets well. Complex datasets 

require more training iterations. It also improves both segmentation models' validation loss and accuracy, 

although other metrics still need further improvement. 
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ABSTRAK 

Dataset pelatihan dalam jumlah terbatas dalam penelitian pembelajaran mendalam dapat memengaruhi 

keakuratan model yang dihasilkan. Situasi ini dapat menyebabkan overfit, sehingga model tidak dapat 

bekerja dengan baik. Conditional Generative Adversarial Network (CGAN) diperkenalkan untuk 

menghasilkan data sintetik dengan mempertimbangkan kondisi tertentu. Penelitian ini bertujuan untuk 

menghasilkan dataset training sintetik tambahan untuk meningkatkan akurasi model segmentasi objek citra. 

Pertama, kami mengevaluasi akurasi generator dataset berbasis CGAN terhadap beberapa dataset terbuka. 

Kemudian, kami menerapkan generator untuk melatih dua model segmentasi objek, yaitu FCN dan CNN U-

Net. Evaluasi kami menunjukkan bahwa CGAN dapat menghasilkan dataset sintetik dengan baik. Kumpulan 

data yang kompleks memerlukan iterasi pelatihan yang lebih banyak. Ini juga meningkatkan kehilangan dan 

akurasi validasi kedua model segmentasi, meskipun metrik lainnya masih memerlukan peningkatan lebih 

lanjut. 

 

Kata kunci— deep learning, data sintetik, cGAN, U-net, segmentasi
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INTRODUCTION 

Deep Learning Deep is a machine learning 

concept gaining popularity nowadays. It can 

automatically extract required features, an essential 

step in preparation for model training. However, 

deep learning requires many training datasets to 

perform well (Mahapatra, 2018; Papernot et al., 

2016; Roh, Heo, & Whang, 2019). 

The limitation of data is an essential issue in deep 

learning. Thousands to millions of labeled datasets 

for each category shall be required to train a model 

(Goodfellow et al., 2014). In fact, we are often faced 

with the problem of a need for more data (Antoniou, 

Storkey, & Edwards, 2017). In this situation, the 

resulting model tends to overfit, i.e., it cannot be 

generalized for the testing datasets and leads to an 

inaccurate model (Antoniou et al., 2017; Ministry of 

Defence, 2020). 

A common solution to improve the accuracy and 

reduce the biases of a deep learning model is to add 

more datasets (Ministry of Defence, 2020; Zhu et al., 

2020). Generating new synthetic datasets is one of 

many available solutions to enlarge dataset size 

(Nyberg, 2021). According to (Antoniou et al., 

2017), an automatic data generator is used to add 

more training datasets to improve the performance of 

the corresponding classification model.  

Image segmentation is a fundamental method in 

object-based image analysis (Hossain & Chen, 

2019). It aims to recognize objects' existence or 

location by labeling each pixel in images into a class 

or category (Kattenborn, Leitloff, Schiefer, & Hinz, 

2021). Convolutional Neural Network (CNN) is 

commonly used to segregate different objects 

semantically (Kulkarni, Mohandoss, Northrup, 

Mwebaze, & Alemohammad, 2020). However, CNN 

often fails to generalize accurate segmentation when 

processing satellite images from other areas or 

weather conditions (Rezaei et al., 2018). In 

practice, Fully Convolutional Networks 

(FCN) and U-Net architectures are the most used 

CNN architectures to perform semantic 

segmentations (Kattenborn et al., 2021). 

Generative Adversarial Network (GAN) is one of 

the deep learning methods to generate synthetic data. 

GAN learns the distributions of the given data or 

images and creates new ones that have equivalent 

patterns and characteristics to the existing datasets 

(Nyberg, 2021). 

This study aims to evaluate CGAN accuracy in 

generating synthetic datasets. We also assess the 

accuracy of using CGAN-generated datasets to train 

CNN-based image segmentation models. 

 

OBJECTIVE 

This study was conducted with the following 

objectives:  

1. To apply and evaluate CGAN to generate 

synthetic data from publicly available image 

datasets. 

2. To evaluate the accuracy of image segmentation 

models trained with additional CGAN-generated 

synthetic datasets. 

 

RELATED WORK 

A sufficient amount of datasets is a common 

problem in deep learning research. Many studies 

have been done to overcome this issue. The study in 

(Roh et al., 2019) published a literature review to 

evaluate methods in data acquisition, labeling, and 

increasing data availability, and each was provided 

with approaches. One of the mentioned methods to 

improve data availability is automatic synthetic data 

generation using GAN. 

Many studies related to data generation using 

GAN also have been conducted. In 2018, Yu, Song, 

& Lu reported that CGAN reduces data-generating 

costs and increases robustness compared to other 

methods. Heilemann et al., 2022 have also conducted 

a study using CGAN and U-Net related to data 

unavailability. Their study found that increasing the 

number of training datasets improves object 

segmentation accuracy. 

The studies above indicate that CGAN is a 

potential candidate for the object segmentation 

model. Rezaei et al., 2018) applied CGAN for the 

semantic segmentation of brain tumours. In 2018, 

Frangi et al. also conducted another medical imaging 

using CGAN by segmenting mammogram images. 
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The result showed that CGAN significantly 

improved segmentation accuracy. 

 

METHODOLOGY  

A. Data Collection 

We use open image datasets, i.e., MNIST-fashion, 

MNIST-digit, CIFAR-10, and Oxford-IIIT Pet, in 

this study. The first three datasets are available in the 

Keras TensorFlow library. MNIST-fashion contains 

cloth pictures of 10 categories: shirts, trousers, 

sweaters, dresses, coats, sandals, suits, shoes, bags, 

and ankle boots. Each category contains 6000 

pictures. MNIST-digit is a collection of digit images 

(‘0’ to ‘9’ characters). CIFAR-10 includes ten 

categories of pictures: airplanes, cars, birds, cats, 

deer, dogs, frogs, horses, ships, and trucks. Each 

category contains 6000 pictures. 

Figures 1, 2, and 3 are sample images from each 

category. 

 
Figure 1. MNIST-Fashion sample images 

 

Figure 2. MNIST-Digit sample images 

 
Figure 3. CIFAR-10 sample images 

Oxford-IIIT Pet dataset is fetched from Kaggle. It 

contains 37 pet categories, each with 200 pictures 

with various scales, layouts, and lighting. We choose 

10 out of 37 categories, as shown in Figure 4. 

Besides synthetic data generation, the Oxford-IIIT 

Pet dataset was also used to evaluate the 

segmentation models. 

 

 
Figure 4. Oxford III-T Pet sample images 

B. CGAN Model 

GAN is formed from generator and discriminator 

architectures. The generator identifies the 

distribution of data, whereas the discriminator 

estimates the possibility of whether a sample 

originated from real datasets or generators. 

Conditional GAN (CGAN) is an extended version 

with an additional feature y, e.g., data label, in both 

generator and discriminator. We implemented it by 

adding y to the generator and discriminator as a new 

input layer. Figure 5 depicts the CGAN model 

training process.  

 
Figure 5. Conditional GAN [17] 

The loss function of CGAN is formulated as:  

𝐿𝑐𝐺𝐴𝑁 = 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉𝐶𝐺𝐴𝑁(𝐷, 𝐺) =

𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑦)] + 𝐸𝑧∼𝑝𝑧(𝑧) [𝑙𝑜𝑔 (1 −

𝐷(𝐺(𝑦)))] ...(1) 

 

𝑉(𝐷, 𝐺): is the value function of CGAN 

y:  condition 

D: discriminator 

G: generator 

x: original data item 

𝑝𝑑𝑎𝑡𝑎(𝑥): data distribution of x 

z: random noise vector as the inputs to generator 

𝑝𝑧(𝑧): prior noise distribution 
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𝐷(𝑦) means discriminator takes two inputs x 
and y to be used with discriminator function. D 

maximizes the accuracy of the classification of 

samples in detecting whether they are original or 

generated. 𝐺(𝑦) means the generator produces 
images based on a condition y. G only influence 
1 − 𝐷(𝐺(𝑧|𝑦), which is the probability that D 
recognizes generated sample, by minimizing its 
value (Cheng, Tahir, Eric, & Li, 2020; Mirza & 

Osindero, 2014; Nyberg, 2021). 
 

A CGAN model is constructed as follows 

(Brownlee, 2019): 

● Load dataset 

● Define generator and discriminator functions 

o Generator: 

▪ Input: point in latent space 

▪ Output: images 

▪ Uses inverse of convolution (transposed 

convolution) 

▪ Activation function: LeakyReLU 

▪ Optimizer: Adam Optimizer 

▪ Activation function in the output layer: 

tanh 

o Discriminator 

▪ Input: images dan class labels 

▪ Output: binary (Original=1, 

Generated=0) 

▪ Implemented using Convolutional 

Neural Network 

▪ Activation function: LeakyReLU 

▪ Optimizer: Adam optimizer 

● Define CGAN model 

o Combination of the generator and 

discriminator 

o Input: point in latent space, uses the 

generator to produce images. The resulting 

images are the inputs of the discriminator. 

o Output: a classification, i.e., original or 

generated 

● Define a function to select random samples 

from the dataset for each update to the CGAN 

model 

● Define input function for the generator from 

latent space 

● Perform CGAN training process with 

predefined parameters. 

 

Generating synthetic datasets using CGAN 

CGAN model was applied to the MNIST-fashion, 

MNIST-digit, and CIFAR-10 datasets to evaluate its 

ability and accuracy in generating synthetic datasets 

before utilizing it to train object segmentation. This 

experiment also can show the characteristics of 

results among different datasets.  

The results are evaluated using plot graphs of 

training loss and training accuracy. CGAN has two 

loss functions, each in generator and discriminator, 

respectively. There are two loss values in the 

discriminator, i.e., loss in detecting that the evaluated 

data is original and loss in detecting that the 

evaluated data is generated. 

 

Image Segmentation 

We performed image segmentation on the Oxford 

IIIT Pet dataset. Before segmentation, additional 

training data is generated using CGAN. We use 

FCN and CNN U-Net as segmentation models and 

compare the results with and without synthetic 

training data on both segmentation models. 

The segmentation models are tested and evaluated 

against the ground truth by collecting the metrics of 

accuracy, training loss, validation loss, Intersection 

over Union (IoU), and Dice Score. 
 

RESULT AND DISCUSSION 

A. Visual Evaluation of Synthetic Data Generation

  
(a)     (b)     (c)  

Figure 6. Sample of generated synthetic MNIST-Fashion data using (a) epoch=10, (b) epoch=20, dan (c) epoch=40 
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(a)     (b)     (c)  

Figure 7. Sample of generated synthetic MNIST-Digit data using (a) epoch=10, (b) epoch=20, dan (c) epoch=40 

  

 
(a)     (b)     (c)   

Figure 8.  Sample of generated synthetic CIFAR-10 data using (a) epoch=10, (b) epoch=20, dan (c) epoch=40 

 

   

 
(a)     (b)      (c)   

Figure 9.  Sample of generated synthetic Oxford IIIT Pet data using (a) epoch=10, (b) epoch=20, dan (c) epoch=40 

   

We used 6000 images as training data 

from MNIST-Fashion and MNIST-Digit, 

respectively. There are 5000 images from 

CIFAR-10 dataset. In the Oxford III dataset, 

there are 10 categories, and we took 200 

images from each category. 
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MNIST-Fashion generated data, as 

visually shown in Figure 6, has a good 

similarity with the original. Increasing the 

epoch from 10 to 20 improves the quality of 

generated images, especially in the green 

rectangle-marked images. These images are 

transformed from images containing 

incomplete parts to complete images. 

However, incomplete prints, such as in the 

red rectangle, remain found. It means that 

the model can generate synthetic images 

properly with the configured parameters. 

Still, more training iterations are needed to 

improve the quality, as shown in the results 

of 40 epochs. 

A similar process on MNIST-Digit 

datasets showed equivalent results, as 

depicted in Figure 7. In the ten epochs, ‘8’ 

characters offer the best quality. 

Meanwhile, most of the ‘1’ and ‘2’ 

characters cannot be seen clearly. 

Increasing the epoch to 40 improves the 

whole image quality. 

In the CIFAR-10 dataset, generated 

images in 10 epochs are still blurry, and 

their class cannot be recognized visually, as 

shown in Figure 8. Objects can be 

recognized well if the epoch is increased to 

40. The CIFAR-10 dataset contains color 

images instead of black and white in the 

former datasets. Therefore, features in this 

kind of image are more variable and require 

more training iterations as well.  

The lowest quality of generated images is 

shown in the Oxford IIIT Pet dataset. This 

dataset has the highest resolution and 

various scales and lighting. Training the 

generator until 40 epochs is insufficient to 

produce good images, as shown in Figure 9. 

Generally, increasing the number of 

training iterations improves generated 

image quality, as demonstrated by the 

above experimental results. More iterations 

are required for richer image features, such 

as color, resolution, and brightness. 

Considering this, we increased the number 

of iterations to 100 for CIFAR-10 and 

Oxford IIIT Pet datasets. The sample results 

are presented in Figures 10 and 11, 

respectively.   

 

 
Figure 10. Sample of generated synthetic CIFAR-

10 data using epoch=100 

 
Figure 11. Sample of generated synthetic Oxford 

IIIT Pet data using epoch=100 

 

The resulting images become clearer 

visually. Both datasets have various colors 

and backgrounds, meaning more features 

that need to be accommodated. This led to 

more iterations, i.e., longer training times, 

to achieve representative outputs. 

 

B. Evaluation Metrics of Synthetic Data 

Generation 

 

 
(a) 

 
(b) 

Figure 12. Evaluation metrics of CGAN on 

MNIST-Fashion dataset: (a) training loss, and (b) 

discriminator accuracy 

 

When applying CGAN on the MNIST-

Fashion dataset, the generator and 

discriminator were stable at iteration 2000 
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(5th epoch), as shown in the line graph in 

figure 12 (a). Loss values of the original 

data discriminator, generated data 

discriminator, and generator at that point 

are 0.670, 0.663, 0.783, consecutively. 

Figure 12 (b) depicts the accuracy of the 

discriminator in identifying whether data is 

original or generated. In line with the loss 

values, the accuracy of either original or 

generated data identifications becomes 

stable at iteration 2340 (5th epoch). In this 

stable condition, the accuracy of the 

original and that of generated data 

identifications are 56.78% and 61.56% on 

average, respectively. 

 

 
(a) 

 
(b) 

Figure 13. Evaluation metrics of CGAN on 

MNIST-Digit: (a) training loss, and (b) 

discriminator accuracy  

In MNIST-Digit dataset generation, as 

shown in figure 13, loss values of the 

generator are gradually increased.  The 

averages of loss values for the original data 

discriminator, generated data discriminator, 

and generator in the last ten epochs are 

0.344, 0.561, and 2.504, respectively. The 

discriminator accuracy graph, i.e., figure 13 

(b), shows great averages of both original 

and generated data which are 85.37% and 

85.83% in the last ten epochs. It means that 

the discriminator model can classify 

original and generated data well. 

 

 
(a) 

ss 

(b) 

Figure 14. Evaluation metrics of CGAN on CIFAR-

10: training loss, and (b) discriminator accuracy  

Both graphs in Figure 14 show 

fluctuations in all evaluation metrics of 

CIFAR-10 dataset compared to the former 

datasets.   

 

 
(a) 

 
(b) 

Figure 15. Evaluation metrics of CGAN on 

Oxford IIIT Pet dataset: (a) training loss, and (b) 

discriminator accuracy 

Oxford IIIT Pet metrics in Figure 15 

show unstable values. In the beginning, the 

loss values of the generator were high and 

decreased gradually. It means that more 

training iterations are required to stabilize 

the metrics. 

There is a general pattern from all the 

above experimental results of loss and 

accuracy from four different datasets, i.e., 

the discriminator and generator are 

opposite. Their loss values would lead to a 

stable state if iterations were increased. An 
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optimal GAN model can be achieved when 

the loss values are stable and convergent, 

i.e., the model cannot increase or decrease 

its loss value. 
TABEL I 

SUMMARY OF CGAN EVALUATION METRICS 

Indikat

or 

Epo

ch 

MNIS

T-

fashio

n 

MNIS

T-

digit 

CIFA

R-10 

Oxfor

d IIIT 

Pet 

Discri

minator 

Loss 

(Origin

al) 

10 0,670 0,368 0,636 0,489 

20 0,672 0,341 0,685 0,488 

40 0,681 0,319 0,70 0,526 

Discri

minator 

Loss 

(Gener

ated) 

10 0,665 0,365 0,608 0,379 

20 0,666 0,339 0,663 0,431 

40 0,675 0,302 0,695 0,420 

Genera

tor 

Loss 

10 0,779 2,087 1,125 3,091 

20 0,782 2,669 0,917 1,827 

40 0,770 3,22 0,757 1,969 

Accura

cy(Orig

inal) 

10 57,56 85,69 59,43 77,52 

20 56,53 84,87 52,87 73,5 

40 54,18 84,7 47,04 70,82 

Accura

cy 

(Gener

ated) 

10 61,21 87,04

7 

69,64

8 

86,92 

20 60,28 85,56 60,95

6 

89,12 

40 57,70 87,02 52,88 83,04 

 

 

Table 1 above shows that from all data, 

the values in the MNIST-fashion data tend 

to be the most stable. MNIST-digit data is 

different from other data. In the MNIST 

digit, the value of the loss discriminator 

tends to decrease, while the value of the loss 

generator tends to increase with a fairly high 

value. However, for the value of 

discriminator accuracy, it can be seen that 

the three data seem to have succeeded in 

reducing the value of discriminator 

accuracy along with the ongoing training 

process, meaning that the generator carries 

out a learning process to make it difficult for 

the discriminator to classify the original and 

generated images. Then for the CIFAR-10 

data, it can be seen that the loss value and 

discriminator accuracy are stable. However, 

the generator needs to produce a better 

image in the previous visual evaluation. It 

means that the value that appears in the 

discriminator loss or accuracy cannot be 

used to evaluate the resulting image but 

must be visually checked to determine 

whether the resulting image is as desired 

and whether training is still needed. It is 

proven that when the number of iterations 

in training is increased again on CIFAR-10 

data, the resulting image generator gets 

better. The resulting values appear unstable 

for the Oxford IIIT pet data, meaning more 

training is needed. 

C. Segmentation 

Segmentation without Additional Data 

Further segmentation process is 

performed on Oxford IIIT pet data. We used 

920 images in the training phase. The 

original data is shown in the following 

Figure 17. 

 
Figure 17. The original image to be predicted 

The segmentation images generated 

during the training process, i.e. at each of 

the 5th, 10th, and 20th epochs are depicted 

in Figures 18 and 19 below. 
 

 
  (a)        (b)               (c) 

Figure 18. FCN segmentation results without 

additional data for (a) epoch=5, (b) epoch=10, and 

(c) epoch=20 

 
  (a)        (b)               (c) 

Figure 19. U-Net segmentation results without 

additional data for (a) epoch=5, (b) epoch=10, and 

(c) epoch=20 

The pictures in Figure 17-19 show that 

the training process can perform better 

segmentation and resemble the actual 

segmentation along with the training 

process. Visually, with epoch 20 above, it 

can be obtained that the segmentation 

results on the U-Net method are better than 

the FCN method. 

 

Segmentation with Additional Data 

Before segmentation, the Oxford IIIT Pet 

dataset is used to train the conditional-GAN 

model to generate synthetic data. Figure 20 
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shows the results of the data training 

process on cGAN after training with 

epoch=1000: 

 
Figure 20. Graph of cGAN Training Loss and 

Accuracy on the Oxford IIIT Pet Dataset 

 
Figure 21. Oxford IIIT cGAN Revival Data Pet 

Dataset Epoch=1000 

 

TABLE II 
EVALUATION OF REGIONAL DATA FOR THE OXFORD IIIT PET 

DATASET   

Ind

icat

or 

Epoch 

10 

Epoch 

20 

Epoch 

40 

Epoch 

100 

Epoc

h 

1000 

FI

D 381,152 

355,10

3 332,625 221,914 

205,

193 

IS 

1,000817

±0,0000

685 

1,0014

8±0,00

009 

1,00169

6±0,000

111 

1,00871

5± 

0,00101 

1,00

701±

0,00

059 

 

 

Figure 20 shows that the resulting values 

have not converged and have a wide range. 

Most animal images (cats and dogs) do not 

resemble the desired shape, as shown in 

Figure 21. The evaluation in Table 2 is also 

in line with those results. In Table 2, the FID 

value up to epoch=1000 is 205.193. This 

value is high, meaning the actual and 

generated images differ. The resulting 

Inception Score (IS) value is small, 

meaning the generated data is homogenous 

and lacks quality. It is likely because the 

datasets used have varied in size, color, and 

lighting, known as complex datasets. The 

complexity of the dataset in this paper 

means the complexity of image attribute 

compositions contained in an 

image/picture, such as lighting, coloring, 

and resolution. Each attribute contributes to 

the computations required to process the 

images. For instance, higher-resolution 

images require more computational 

resources to process that the lower-

resolution images. Another example is that 

rich-colored images are more expensive to 

process than black-and-white images. 

Next, 1000 synthetic data are generated 

using the cGAN model that has been 

trained. This data is then fed into 

segmentation training. The segmentation 

results are shown in Figures 22 and 23 

below. 

 
(a)        (b)               (c) 

Figure 22. FCN segmentation results with 

additional data for (a) epoch=5, (b) epoch=10, and 

(c) epoch=20 

 
(a)        (b)               (c) 

Figure 23. U-Net segmentation results with 

additional data for (a) epoch=5, (b) epoch=10, and 

(c) epoch=20 

 

D. Comparison of Segmentation between 

with and without Synthetic Data 

The difference in segmentation results 

between the two conditions with and 

without adding synthetic data can be seen in 

Table 3 and Table 4 below:  
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TABLE III 
COMPARISON OF SEGMENTATION WITH AND WITHOUT 

ADDITIONAL DATA USING THE FCN MODEL 

Different

iator 

Without Additional 

Data 

With Additional 

Data 

Segment

ation 

image 

  

Loss 

training 

0.25

92 

0.17

51 

0.1

300 

0.28

96 

 0.21

10 

0.1

33

0 

Training 

accuracy 

0.86

78 

0.91

86 

0.9

396 

0.86

07 

 0.90

03 

 0.

93

94 

Loss 

validatio

n 

0.51

62 

0.71

52 

0.9

647 

0.46

24 

0.580

7 

 0.

79

62 

Validatio

n 

accuracy 

0.81

53 

0.81

56 

0.8

171 

0.81

98 

0.828

1 

0.8

27

2 

IoU 0,53066 0,50158 

Dice 

score 

0,68536 0,6564 

 

TABLE IV 
COMPARISON OF SEGMENTATION WITH AND WITHOUT 

ADDITIONAL DATA USING THE U-NET MODEL 

Differenti

ator 

Without Additional 

Data 

With Additional Data 

Segmenta

tion 

image 

  

Loss 

training 

0,11

21 

0,05

80 

0,03

11 

0.16

46 

0.093

3 

 0.05

11 

Training 

accuracy 

0,94

89 

0,96

87 

0,97

58 

0.92

73 

0.955

7 

 0.97

06 

Loss 

validatio

n 

0,39

45 

0,50

80 

0,72

35 

0.32

02 

0.389

8 

0.621

1 

Validatio

n 

accuracy 

0,86

65 

0,87

15 

0,86

72 

0.87

86 

 0.88

06 

 0.87

18 

IoU 0,70878 0,68498 

Dice 

score 
0,82656 0,80858 

 
 

From the two comparisons in Tables 3 

and 4, the segmentation results on 

additional data have generally decreased. 

Similarly, in FCN and U-Net, the value of 

training loss increased, training accuracy 

decreased, and IoU and Dice Score 

decreased. Only the validation loss and 

validation accuracy show better results, as 

shown in the yellow highlights. It is because 

the generated data that was previously used 

lacks similarity to the original data. 

However, there is still an influence on the 

results obtained. Decreasing the validation 

loss value and increasing validation 

accuracy when data is added shows that the 

model is getting better at determining model 

parameters. Therefore, in the future, better 

data generation can be done to obtain better 

segmentation results. 

 

CONCLUSIONS 

In this study, the following conclusions 

are obtained: 

1. The cGAN method can generate 

synthesis data well through training. 

More complex data requires training 

with more iterative processes. 

2. Adding generated synthetic data with 

cGAN positively affects loss and 

validation accuracy, but vice versa for 

other evaluation indicators. It means 

there is an effect from the addition of 

synthetic data, even though not on all 

evaluation indicators. The insufficient 

similarity of generated synthetic 

images from the original images 

causes it. 
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