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Introduction/Main Objectives: Education serves as a driving force for the 

transformation of society to break the cycle of poverty. This study examines 

the relationship between average years of schooling and per capita household 

expenditure in Kalimantan Tengah Province in 2020. Background Problems: 

The method of estimating a regression model that is assumed to follow a certain 

form of regression equation such as linear, quadratic and others is called 

parametric regression. However, researchers often encounter difficulties in 

determining the model specification through data distribution, so the method 

used is nonparametric regression. Novelty: This research uses a quantile-based 

approach to explore how the impact of education on per capita expenditure 

varies across different levels of household education. This provides a more 

nuanced understanding of the relationship, showing not just whether education 

matters, but how its influence changes at different levels of educational 

attainment. Research Methods: The relationship between average years of 

schooling and per capita household expenditure is modeled using a quantile 

regression model with the constrained B-Splines method. Finding/Results: 
Based on the established classification, it can be concluded that an increase in 

the average years of schooling among household members tends to have a 

greater impact on raising per capita expenditure. 
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1. Introduction  

Poverty is seen as an economic inability to fulfill basic food and non-food needs measured in terms 
of expenditure [1]. Expenditure on food and non-food consumption needs can reflect the level of the 
community's economic capacity, and the purchasing power of the community can provide an overview 
of the level of community welfare. The higher the purchasing power of the community, the higher the 
ability to fulfill their needs, which in turn will lead to an increase in community welfare. 

Education serves as a driving force for the transformation of society to break the cycle of poverty. 
Education helps reduce poverty through its effect on labor productivity and through social benefit 
channels, so education is an important development goal for the nation [2]. Education is a means to gain 
insight, knowledge, and skills so that employment opportunities are more open and wages are also 
higher. 
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A person's education is one of the determinants of per capita consumption [3]. The average years 
of schooling, which shows the level of education of the community, can reduce the poverty rate in 
Indonesia [4]. Highly educated people will have skills and expertise so that they can increase their 
productivity. Increased productivity will increase company output, increase worker wages, and increase 
people's purchasing power so that it will reduce poverty. The education, especially an increase in the 
number of years of learning, is a prerequisite for this stage of economic development [5]. The higher a 
person's education, the better the quality of human resources and will affect productivity. And of course, 
higher productivity will increase income and expenditure. 

Education is concerned with the development of knowledge as well as the expertise and skills of 
people and labor in the development process. Due to its enormous contribution to economic 
development, education is said to be human capital. Education is one of the investments in human 
resources to get a better life. A person with a higher education usually has greater access to higher-
paying jobs, compared to individuals with lower levels of education [6]. Through adequate education, 
the poor will have a better chance of escaping poverty in the future [7]. This is in line with [8] that if 
education investment is made evenly, including in low-income communities, poverty will be reduced. 

B-splines method has been used in several modelling applications by implementing constraints. 
The constrained smoothing B-splines (COBS) method nonparametrically estimates interest rate 
structures while meeting no-arbitrage constraints, such as monotonicity and positive rates, enhancing 
robustness against outliers. Balancing flexibility and constraint adherence, COBS occupies a middle 
ground between parametric and nonparametric methods, making it well-suited for markets with varying 
liquidity [9]. A method for constructing COBS wavelets by [10] using the lifting scheme, enabling 
multiresolution analysis with control over specific points and derivatives. This approach allows curve 
smoothing while preserving selected "feature points," seamless representation across different 
resolutions, and editing under constraints. The algorithm is optimized with linear time and storage 
complexity in the number of control points, making it highly efficient for large datasets. A method by 
[11] for designing optimal smoothing splines with derivative constraints, using a linear control system 
to generate the spline. Constraints on spline derivatives are formulated as controls on the system’s input 
and initial state, useful in applications like trajectory planning and convex shape-preserving splines. The 
method reduces the problem to convex quadratic programming, effectively handling pointwise 
constraints. 

This study will look at the relationship between education level (average years of schooling) and 
poverty level (household expenditure per capita) in Kalimantan Tengah Province in 2020. Household 
expenditure per capita is a proxy for household income per capita, which is difficult to obtain in practice. 
Furthermore, the data was collected in March 2020 as we know that in that period the COVID-19 
outbreak began. Average years of schooling is the number of years of study that the population aged 25 
years and over has completed in formal education (excluding years repeated). Concerning household 
expenditure, the variable that has a significant effect is working/not working status. The reference 
population aged 18 years and above is used because, at the age point of 18 years and above, the 
proportion working is greater than those not working. Therefore, the reference population taken is the 
population aged 18 years and above. Kalimantan Tengah Province has the second lowest poverty rate 
in Kalimantan Island after Kalimantan Selatan Province. 5.36 percent of the population was recorded as 
poor in 2016 with an average monthly per capita expenditure of IDR 920,786. The average years of 
schooling in 2015 was recorded at 8.03 years. Nationally, per capita income was recorded at 
IDR.868,823 and the average years of schooling was 7.84. So that the higher the average years of 
schooling, the greater the expenditure/income, so that it will have an impact on poverty status. 

At the household level, the relationship between education level (average years of schooling) and 
poverty level (household expenditure) can be shown based on a regression model. The method of 
estimating a regression model that is assumed to follow a certain form of regression equation such as 
linear, quadratic, and others is called parametric regression. However, researchers often encounter 
difficulties in determining the model specification through data distribution, so the method used is 
nonparametric regression. One of the estimation techniques in nonparametric regression is B-splines. B-
splines is an estimation technique in regression curve fitting that takes smoothing into account. B-
Splines are good at handling nonlinear relationships. Through movable knot locations that serve as 
anchor points where the curve can alter its behavior, they provide flexibility. Because they can describe 
both linear and complex nonlinear interactions, this flexibility is useful in situations that need for both 
smoothness and precision [12].  

Furthermore, [13] proposes Constrained B-Splines to accomodates the constraines which can be 
monoton, convec or periodic based on the assumed of the form of curve regression so the regression 
curve will be more smooth by facilitates the addition of smoothing parameters. The addition of 
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monotone constraints is often applied to estimate parameters where the relationship between the 
response variable and the predictor variables is assumed to be monotone [14]. The addition of monotone 
constraints has a smoothing effect on the estimated regression model [15].  

2. Materials and Methods 

2.1. Materials 

The data in this study uses data sourced from the results of the National Socio-Economic Survey 
(Susenas) semester I 2020 in Kalimantan Tengah Province. The variables used are the Per Capita 
Expenditure variable as the response variable and the Average Years of Schooling per capita variable 
as the predictor variable. Household expenditure according to [1] is the cost incurred for consumption 
by all household members during the month, which consists of food and non-food consumption, 
regardless of the origin of the goods and is limited to consumption for business purposes or given to 
other parties. Per capita household expenditure is household expenditure divided by the number of 
household members in a household or in other words the average household expenditure for each 
household member. 

Average Years of Schooling (RLS) is the number of years spent in formal education. The 
population included in the calculation of RLS is the population aged 25 years and over. However, based 
on the background discussed earlier, this study uses the limitation of RLS calculation on the population 
aged 18 years and above. Average Years of Schooling per capita is the average years of schooling of all 
household members aged 18 years and above in a household divided by the number of household 
members. RLS is calculated using the following formula [1]: 

18

118

1
( )

P

i

i

RLS LS
P

+

=+

=   (1) 

P18+ : Total population aged 18 years and over 

LSi  : years of schooling of the i-th population. 

Years of schooling of the population aged 18 years and over at the last completed level of education 
using the following conversion [16]: 

Table 1. Conversion highest education completed 

No. Highest education completed Years 

1. No/never been to school 0 

2. Primary school/equivalent 6 

3. Junior high school/equivalent 9 

4. High school/equivalent 12 

5. Diploma I 13 

6. Diploma II 14 

7. Academy/ Diploma III 15 

8. Diploma IV/ Bachelor (S1) 16 

9. Magister (S2) 18 

10. Doctor (S3) 22 

Source: BPS, 2011 

2.2. Methods 

2.2.1. Nonparametric Regression 

Suppose Y is the response variable and X is the predictor variable with {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2, … 𝑛}, 𝑥𝑖 ∈
𝑋, 𝑦𝑖 ∈ 𝑌. The relationship between 𝑥𝑖  and 𝑦𝑖 can be assumed to follow the regression model as follows: 

( ) ,    1,2,...,i i iy f x i n= + =  (2) 

 

where 𝜀𝑖 is the random error and 𝑓(𝑥𝑖) is the regression function.             
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2.2.2 B-Splines 

B-splines is one of the methods used to estimate nonparametric regression functions. B-splines are 
defined as polynomial functions that have segmented properties at the interval x formed by knot points 
(piecewise polynomial) which are then locally estimated at these intervals for a certain polynomial 
degree [17]. To obtain B-splines of degree v with u knot points, additional knots of 2v are first defined 
so that a knot row 𝑇 = (𝑡1, … , 𝑡𝑣 , 𝑡𝑣+1, … , 𝑡𝑢+𝑣 , 𝑡𝑢+𝑣+1, … , 𝑡𝑢+2𝑣) with 𝑡1 = ⋯ = 𝑡𝑣 < 𝑡𝑣+1 < ⋯ <
𝑡𝑢+𝑣 < 𝑡𝑢+𝑣+1 = ⋯ = 𝑡𝑢+2𝑣. Furthermore, the jth B-splines with 𝑗 = 1, … , 𝑢 + 𝑣 = 𝑚 are recursively 
denoted by the following formula: 

( ) ( ) ( )1

1 1

; ; 1 ; 1
j j

j j j

j j j j

x t x t
B x B x B x

t t t t



 

  
+

+

+ − + +

− −
= − − −

− −
 (3) 

where: 

( ) 11,  if 
;1

0,  others           

j j

j

t x t
B x

+ 
= 


 (4) 

From equations (3) and (4) it is obtained that on the interval [𝑡𝑣 , 𝑡𝑢+𝑣+1],  ∑ 𝐵𝑗(𝑥; 𝑣) = 1𝑚
𝑗=1  holds for every 

x. 
The regression model (2) is a regression function of unknown shapes that will be approximated by 

the B-splines function. The B-splines function is formulated: 

( ) ( )
1

;
m

j j

j

f x B x 
=

  (5) 

From equation (5) above, the regression model (2) becomes: 

( )
1

; ,     1,2,...,
m

i j j i i

j

y B x i n  
=

= + =  (6) 

or we can denote it as 

= +Y Bα ε  (7) 

In general, the objective function of B-spline regression is as follows: 

( )
2

1 1

ˆ arg min ;
n m

i j j i

i j

y B x  
= =

   
= −  

   
   (8) 

So that by using the matrix form (8), the estimator of the B-splines parameter is obtained as follows 

( ) ( ) 2
TT T T T T T= − − = − +ε ε Y Bα Y Bα Y Y α B Y α B Bα  (9) 

The minimum value of 𝛆𝐓𝛆 is obtained if 
𝜕(𝛆𝐓𝛆)

𝜕𝛂
= 0, so −𝟐𝐁𝐓𝐘 + 𝟐𝐁𝐓𝐁𝛂̂ = 0. So, the estimator of B-

splines is 

( )
1

ˆ T T
−

=α B B B Y   (10) 

 
  Based on the results in  (10), the estimator for the regression model (7) in matrix form is 

=Y AY  (11) 

where: 

𝐀 = 𝐁(𝐁𝐓𝐁)−𝟏𝐁𝐓 
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2.2.3. Derivation and Monotonicity of B-Splines (Constrained B-Splines) 

The first derivative of v-order B-splines with v>1 in equation (3) is 

𝜕𝐵𝑗(𝑥;𝑣)

𝜕𝑥
=

𝑣−1

𝑡𝑗+𝑣−1−𝑡𝑗
𝐵𝑗(𝑥; 𝑣 − 1) −

𝑣−1

𝑡𝑗+𝑣−𝑡𝑗+1
𝐵𝑗+1(𝑥; 𝑣 − 1), 

 

      (12) 

while the first derivative for v = 1 is equal to 0 [17]. After obtaining the first derivative of B-splines       
(12) then the first derivative for the B-splines function (5) is 

𝜕𝑓(𝑥)

𝜕𝑥
= (𝑣 − 1) (∑

𝛼𝑗 − 𝛼𝑗−1

𝑡𝑗+𝑣−1 − 𝑡𝑗

𝐵𝑗(𝑥; 𝑣 − 1)

𝑚

𝑗=2

) . (13) 

From the above results, it is obtained that the value of  
𝜕𝑓(𝑥)

𝜕𝑥
 is affected by the value of 𝛼𝑗 − 𝛼𝑗−1 = 𝛿𝑗  for 

j = 2,…,m. So, it can be concluded that for   

𝛼𝑗 ≥ 𝛼𝑗−1  (𝛿𝑗 ≥ 0),     𝑗 = 2, … , 𝑚   (14) 

the value of  
𝜕𝑓(𝑥)

𝜕𝑥
 is non-negative so the B-splines function is a monotonically increasing function. 

While for 

𝛼𝑗 ≤ 𝛼𝑗−1  (𝛿𝑗 ≤ 0),     𝑗 = 2, … , 𝑚 (15) 

the value of  
𝜕𝑓(𝑥)

𝜕𝑥
  is non-positive so the B-splines function is a monotone-decreasing function. 

The addition of monotone constraints as in   (14) and (15) is often applied to estimate parameters 
where the relationship between response variables and predictor variables is assumed to be monotone 
[14]. The addition of monotone constraints provides a smoothing effect on the estimated regression 
model [15]. From the first derivative of B-splines in equation       (12), the second derivative is 

𝜕2𝐵𝑗(𝑥; 𝑣)

(𝜕𝑥)2
=  (𝑣 − 1)(𝑣 − 2) [

1

(𝑡𝑗+𝑣−1 − 𝑡𝑗)(𝑡𝑗+𝑣−2 − 𝑡𝑗)
𝐵𝑗(𝑥; 𝑣 − 2)

− (
1

(𝑡𝑗+𝑣−1 − 𝑡𝑗)
+

1

(𝑡𝑗+𝑣 − 𝑡𝑗+1)
)

1

(𝑡𝑗+𝑣−1 − 𝑡𝑗+1)
𝐵𝑗+1(𝑥; 𝑣 − 2)

+
1

(𝑡𝑗+𝑣 − 𝑡𝑗+1)(𝑡𝑗+𝑣 − 𝑡𝑗+2)
𝐵𝑗+2(𝑥; 𝑣 − 2)]. 

 

(16) 

While the second derivative of the B-splines function is 

𝜕2𝑓(𝑥)

(𝜕𝑥)2
= (𝑣 − 1)(𝑣 − 2) (∑

𝛼𝑗 − 𝛼𝑗−1

𝑡𝑗+𝑣−1 − 𝑡𝑗
−

𝛼𝑗−1 − 𝛼𝑗−2

𝑡𝑗+𝑣−2 − 𝑡𝑗−1

𝑡𝑗+𝑣−2 − 𝑡𝑗

𝐵𝑗(𝑥; 𝑣 − 2)

𝑚

𝑗=3

) (17) 

From the above results, the second derivative is obtained if the order of the B-splines is v > 2. 

2.2.4. Quantile Regression 

Quantile regression introduced by [18] is an extension of median regression, where quantile 
regression allows to estimate of quantile functions at various desired quantile values [19]. Suppose Y is 
a random variable that has a distribution center, denoted c, then the cumulative distribution function  
𝐹𝑌(. ) of c is written: 

𝐹𝑌(𝑐) = 𝑃(𝑌 ≤ 𝑐). (18) 

For 𝜏 ∈ [0,1], the τ-th quantile of Y which is based on the objective function 𝐿1 (loss-function), indicates 
the specific locations of a distribution. The function 𝐿1 is defined 

 𝑞𝜏(𝑌) = 𝐹𝑌
−1(𝜏) = inf{𝑐 ∶  𝐹𝑌(𝑐) ≥ 𝜏}. (19) 

In general, the τ-th quantile of Y can be expressed by minimizing 

𝑞𝜏(𝑌) = argmin𝑐 E[𝜌𝜏(𝑌 − 𝑐)], (20) 

with the function 𝜌𝜏(. ) referred to as the defined ‘check-function’: 

𝜌𝑡(𝑧) = {
𝜏𝑧, 𝑖𝑓 𝑧 > 0 

−(1 − 𝜏)𝑧, 𝑜𝑡ℎ𝑒𝑟𝑠
 (21) 

Furthermore, from equations (20) and (21) obtained 



Quantile Regression…|Yoga Sasmita, et al. 

Page 28 

 

E[ 𝜌𝜏(𝑌 − 𝑐)] = (𝜏 − 1) ∫ (𝑌 − 𝑐)𝑑𝐹𝑌(𝑦)
𝑐

−∞
+ 𝜏 ∫ (𝑌 − 𝑐)𝑑𝐹𝑌(𝑦)

∞

𝑐
. (22) 

By minimising the first derivative of the function in equation (22) is obtained: 

  0 = (1 − 𝜏) ∫ 𝑑𝐹𝑌(𝑦)
𝑐

−∞

− 𝜏 ∫ 𝑑𝐹𝑌(𝑦)
∞

𝑐

= 𝐹𝑌(𝑐) − 𝜏  (23) 

The function 𝐹𝑌(. )  is monotone, so every element of {𝑦: 𝐹𝑌(𝑦) = 𝜏} minimizes the function (23). From 
equation (19), it is obtained that  𝑐 = 𝐹𝑌

−1(𝜏) is a unique solution. Suppose 𝑌1, … , 𝑌𝑛 are random samples 
from Y such that 𝑌1, … , 𝑌𝑛 are independently and identically distributed (i.i.d) with Y. The empirical 
cumulative distribution function of 𝑌1, … , 𝑌𝑛 is written: 

𝐹𝑛(𝑌) =
1

𝑛
∑ 𝐼(𝑌𝑖 ≤ 𝑦)𝑛

𝑖=1 , (24) 

where I(A) is the indicator of the set A that satisfies the conditions: 

𝐼(𝐴) = {
1, 𝐴 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑
0, 𝐴 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑

 

The function  𝐹𝑌(. ) can be replaced by 𝐹𝑛(𝑌) and 𝐹̂𝑌
−1

(𝜏) which is the estimator of 𝐹𝑌
−1(𝜏) can be 

obtained by minimizing 

argmin𝑐 ∫ 𝜌𝜏 (𝑌 − 𝑐)𝑑𝐹𝑛(𝑌) = argmin𝑐

1

𝑛
∑ 𝜌𝜏

𝑛

𝑖=1

(𝑌𝑖 − 𝑐). (25) 

𝑌 = 𝛽0 + 𝛽1𝑋(1) + ⋯ + 𝛽𝑝𝑋(𝑝) + 𝜀 = 𝐗𝑻𝛽 + 𝜀, (26) 

with 𝛽 = (𝛽0, … , 𝛽𝑝)
𝑇

, 𝐗 = (1, 𝑋(1), … , 𝑋(𝑝))
𝑇
 and 𝜀 is assumed to have a distribution with the notation F.  In 

general, the τ-th quartile of the error (ε) which is 

𝐹−1(𝜏) = inf{𝑢: 𝑃{𝜀 ≤ 𝑢} ≥ 𝜏}, (27) 

with u being the error of the regression model (27). The quantile curve equation for Y conditional on X 

can be written 

𝑞𝜏(𝑌|𝐗) = [𝛽0 + 𝐹−1(𝜏)] + 𝛽1𝑋(1) + ⋯ + 𝛽𝑝𝑋(𝑝) = 𝐗𝑻𝛽(𝜏) (28) 

with  𝛽(𝜏) = ((𝛽0 + 𝐹−1(𝜏)), … , 𝛽𝑝)
𝑇

.  As in the previous discussion, the estimator of the parameter 𝛽̂(𝜏) 

is obtained by minimizing 
min

𝛽
  E[𝜌𝜏(𝑌 − 𝐗𝑻𝛽(𝜏))]. (29) 

Let (𝑋1
(1), … , 𝑋1

(𝑝), 𝑌1), … , (𝑋𝑛
(1), … , 𝑋𝑛

(𝑝), 𝑌𝑛) be random samples from (𝑋(1), … , 𝑋(𝑝), 𝑌) that are 

independently and identically distributed (i.i.d) so that the conditional quantile objective function in 

equation (28) becomes 

min
𝛽

 ∑ 𝜌𝜏

𝑛

𝑖=1

(𝑌𝑖 − 𝐗𝒊
𝑻𝛽(𝜏)), (30) 

with 𝐗𝒊 = (1, 𝑋𝑖
(1), … , 𝑋𝑖

(𝑝))
𝑇
 being the ith observation of X. 

 

2.2.5. Confidence Interval for Quantile Regression 

One system of estimating population parameters based on samples is the confidence interval, which 
produces more representative parameter estimators than the point estimator system [20]. A confidence 
interval is an interval between two numbers, where the parameter value of the population lies within the 
interval. Since quantile regression was introduced, various methods have been used to estimate 
confidence intervals on quantile regression curves. One of the methods used is the direct method. The 
direct method is more efficient in estimating confidence intervals than other methods [21]. 

 For 𝜏 ∈ [0,1] and 𝛼 ∈ (0,1), the (1 − 𝛼) percent confidence interval for the quantile regression curve 

equation (28) is 

𝐼𝑛 = ((𝐗𝑻𝛽̂(𝜏 − 𝑏𝑛)) , (𝐗𝑻𝛽̂(𝜏 + 𝑏𝑛))) (31) 

with, 

𝑏𝑛 = 𝑧𝛼√𝐗𝐐−𝟏𝐗𝑻𝜏(𝜏 − 1)/√𝑛, 

where 𝑧𝛼 is the (1-α) standard normal percentile point and 

𝐐 = 𝐧−𝟏(𝐗𝒊𝐗𝒊
𝑻), (32) 
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Where Q is a positive definite matrix of size ((p+1)×(p+1)). 

2.2.6. Quantile Regression Smoothing B-Splines 

The quantile objective function for smoothing B-Splines in the form of a linear equation is: 

( )( ) min | , ,T T +

++ + − = 
n u

W u W υ Xα u υ Y u υ  (33) 

Where u and υ are vectors of positive and negative parts of the regression residuals. 

( ) 1

1

n u

u

+ 



 
=  
 

W
W

1
 (34) 

with ( ) ( )( )1 ,...,
T

nz z  =W  is the weight vector 

1u

 
=  
 

Y
Y

0
 (35) 

( ) 1n u+ 
Y  is a pseudo response vector with ( )1,...,

T

ny y=Y  

 
=  
 

B
X

λC
 (36) 

( )( )n u m+ 
X  is a pseudo matrix design with: 

( ) ( ) ( )

( ) ( ) ( )
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  



 
 
 

=  
 
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 
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1 1 1 1

' ' ' '

1 1 1 1
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u m

m m m m m m

B t B t B t B t

B t B t B t B t

      

   

+ +



− −

 − −
 
 =
 

− − 
 

C  

The objective function: 

T T+W u W υ  

The control function: 

+ − =Xα u υ Y  

 

2.2.7. Selection of Smoothing Parameters and Knots 

The criterion for selecting the most optimum smoothing parameter (λ) uses the smallest Schawrz 
Information Criterion (SIC) value [13], with the formulation: 

1 1

1 1 log( )
ˆ( ) log( ( ( ; )))

2

n m

i j j i

i j

n
SIC y B x v p

n n
   

= =

= − + 
 

(37) 

Where pλ is the sum of the zero residuals for the fitted model. 
The number of knots for B-Splines smoothing quantile regression is 20 knots where the location is 

chosen based on the unique value of the variable X [13]. The u-th knot point (tu) is obtained from: 
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quantile of of the value for variable X;   1, 2,..., 20
20

u

u
t u

 
= − = 

 
 (38) 

2.2.8. Monotone Constraint Function on Linear Programmes for Quantile 
Regression 

The addition of an increasing or decreasing monotone constraint function when estimating 
parameters provides a smoothing effect on the curve of a regression model. The criteria for checking 
monotone constraints on the objective function of quantile regression on Smoothing B-Splines are: 

Hα > 0, for monotone increasing function 
Hα < 0, for monotone decreasing function 

With: 

( ) ( )

( ) ( )

' '

1

' '

1 1

; ;

; ;

m

m m m

B t B t

B t B t

  

 −

 
 

=  
 
 

H  

𝑯̂𝒙 > 0, for monotone increasing function 

𝑯̂𝒙 < 0, for monotone decreasing function 

With: 

( ) ( )( )( )2 2u n u+  +
=H H 0  

2.2.9. Research Steps 

The steps in this study are: 
1. Creating a scatter plot between the response variable and the independent variables 
2. Performing model specification based on the scatter plot, in this case a B-Splines function 

approach is used. 
3. Checking for outliers in the scatter plot results and if there are outliers then quantiles are used. 

Checking for outliers can also be done by looking at the distribution of errors with the mean as 
a measure of data concentration in the B-Splines function. 

4. Determine the constraints of the relationship between the two variables, whether it is 
monotonically increasing or monotonically decreasing. 

5. Determine the number of knots and smoothing parameter (λ). In this paper, the B-Splines 
smoothing function with the number of knots used is 20 knots, and the smoothing parameter (λ) 
is determined based on the smallest Schawrz Information Criterion (SIC) value. 

6. Estimate the quantile regression curve based on the optimal value of smoothing parameter (λ) 
at several quantile points, namely at τ = 0.2; 0.4; 0.6; 0.8. 

7. Estimating the confidence interval for the quantile regression curve by the direct method 

 

3. Results and Discussions 

This chapter will explain the relationship between the variables of average years of schooling and 
average per capita household expenditure in Central Kalimantan Province in 2020 modelled by the 
COBS method. The reason for using the COBS method is that the data plot (Figure 1) shows a pattern 
that cannot be clearly specified but has an increasing trend, so it would be better to do the modelling 
nonparametrically. What is meant by ‘Constrained’ here is the assumption that the relationship between 
the two data is an increasing pattern which is further referred to as ‘Increase Constrained’. This can be 
interpreted that the average household expenditure per capita increases along with the average years of 
schooling of household members. 
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(a) (b) 

Figure 1. Data plots of household expenditure per capita and average years of schooling: (a) original 
plot; (b) transformation plot 

Addition to the irregularity of the data pattern, the next phenomenon is the presence of outlier data 
(Figure 2) from the residuals of the B-splines model presented in the mean regression. Thus, to capture 
the phenomenon of the existence of outlier residuals, quantile regression analysis is applied in estimating 
model parameters. 

 

Figure 2. Boxplot of residuals from the b-splines model 

Furthermore, to divide households into groups with similar characteristics based on the average 
years of schooling of household members and per capita household expenditure, four quantile regression 
modelling will be applied with the boundaries of the 0.2nd quantile, 0.4th quantile, 0.6th quantile and 
0.8th quantile. In quantile regression modelling, each quantile has the same number and location of knot 
points as presented in Table 2. 

Table 2. Knot points at each quantile  

Point t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

Knot 0 3.00 4.80 5.60 6.60 7.33 8.14 8.60 9.33 10.12 

 

Point t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 

Knot 10.50 11.25 11.67 12.33 12.83 13.50 14.40 15.00 16.00 19.00 

 

Table 2 shows the knot points calculated by the quantile method from the unique values of the 
average years of schooling variable as many as 126 values. Meanwhile, the optimum curve smoothing 
parameter (λ) in each quantile has different values as presented in Figure 3.  
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(a) Quantile (τ) = 0.2 (b) Quantile (τ) = 0.4 

 
 

(c) Quantile (τ) = 0.6 (d) Quantile (τ) = 0.8 

Figure 3. Optimum smoothing parameter (λ) based on the smallest SIC value in each quantile 

 

Figure 3 (a) shows that at the 0.2th quantile, the optimum smoothing parameter (λ) is 9.48 with a 
minimum SIC of -1.9591. This indicates that, at the lower end of the distribution, a relatively smaller 𝜆 
provides the best smoothing effect, resulting in a more accurate model with minimized information loss. 
Figure 3 (b) shows that at the 0.4th quantile, the optimum smoothing parameter (λ) is 139 with a 
minimum SIC of -1.6065. This suggests that, as we move towards the median of the data distribution, a 
much larger λ is required to achieve optimal smoothing, potentially due to increased variability in this 
middle range that requires more significant smoothing to reduce the SIC. Figure 3 (c) shows that at the 
0.6th quantile, the optimum smoothing parameter (λ) is 71.1 with a minimum SIC of -1.5969. This result 
indicates a moderate level of smoothing is ideal for the upper-middle quantile, which is lower than that 
required for the 0.4th quantile but higher than at the 0.2th quantile.  

This pattern might reflect changes in data variability or distribution characteristics that affect the 
model's performance at this quantile level. Figure 3 (d) shows that at the 0.8th quantile, the optimum 
smoothing parameter (λ) is 36.3 with a minimum SIC of -1.9021. Compared to the lower quantiles, the 
decrease in the optimum λ suggests less need for aggressive smoothing, possibly due to reduced 
variability or a different distribution pattern in the upper quantiles. Armed with the optimum knot points 
and smoothing parameters (λ) that have been obtained at each quantile, the quantile regression curve 
based on the COBS method for linear B-Splines smoothing with the assumption of monotonous increase 
(Increase Constrain) is presented in Figure 4. 

Figure 4 shows the estimated household expenditure per capita based on the average years of 
schooling of household members at the 0.2 quantile, 0.4 quantile, 0.6 quantile and 0.8 quantile. At the 
0.6 and 0.8 quantiles, an average year of schooling of around seven years and above drastically increases 
per capita expenditure. The estimated per capita household expenditure is obtained from the quantile 
regression model which has coefficients (α) as presented in Table 3.  
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Figure 4. Quantile regression curve with COBS 

 

Table 3 shows that the coefficient value in each quantile tends to increase, this is what makes the 
quantile regression curve in Figure 4 tend to rise. Thus, the relationship between the average years of 
schooling of household members and household expenditure per capita tends to increase in line with the 
assumption (Increase Constrain).  

 

Table 3. Linear b-splines quantile regression coefficients at the 0.2nd, 0.4th, 0.6th and 0.8th 
quantiles 

Knot ith (ti) 
Coefficient (α) 

τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8 

1 13.3890 13.6773 13.9650 14.2611 

2 13.3890 13.6773 13.9650 14.2611 

3 13.3890 13.6921 13.9970 14.2906 

4 13.4570 13.7163 14.0112 14.3037 

5 13.4640 13.7466 14.0289 14.3201 

6 13.4692 13.7688 14.0420 14.3321 

7 13.4749 13.7933 14.0563 14.3454 

8 13.5016 13.8071 14.0720 14.3529 

9 13.5444 13.8293 14.0972 14.3649 

10 13.5907 13.8533 14.1243 14.3779 

11 13.6126 13.8753 14.1372 14.4274 

12 13.6565 13.9705 14.2328 14.5329 

13 13.6934 14.0234 14.2860 14.5916 

14 13.7859 14.1081 14.3710 14.6854 

15 13.8553 14.1716 14.4348 14.7558 

16 13.9478 14.2563 14.5198 14.8497 

17 14.0728 14.3706 14.6346 14.9764 

18 14.1560 14.4468 14.7111 15.0608 

19 14.2948 14.5738 14.8386 15.2016 

20 14.7112 14.9549 15.2213 15.6239 
Source: Susenas March 2020 BPS, processed 
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The quantile regression model with the coefficients presented in Table 3 is as follows: 

a) Quantile Regression Model for the 0.2nd Quantile: 

𝑦̂ = ∑ 𝛼𝑗𝐵𝑗(𝑥; 𝑣 = 2)

20

𝑗=1

 

𝑦̂ = 13.39 (
𝑥

3.00
𝐵1(𝑥; 1) −

𝑥−4.80

1.80
𝐵2(𝑥; 1)) + 13.39 (

𝑥−3.00

1.80
𝐵2(𝑥; 1) −

𝑥−5.60

0.80
𝐵3(𝑥; 1)) + 

𝑦̂ = 13.39 (
𝑥−4.80

0.80
𝐵3(𝑥; 1) −

𝑥−6.60

1.00
𝐵4(𝑥; 1)) + ⋯ + 14.16 (

𝑥−15.00

1.00
𝐵18(𝑥; 1) −

𝑥−19

3.00
𝐵19(𝑥; 1)) + 

         14.29 (
𝑥 − 16.00

3.00
𝐵19(𝑥; 1)) 

𝑦̂𝑦̂ = 4.46𝑥𝐵1(𝑥; 1) − (7.44𝑥 − 35.71)𝐵2(𝑥; 1) + ⋯ + (4.76𝑥 − 76.21)𝐵19(𝑥; 1) 

b) Quantile Regression Model for the 0,4th Quantile: 

𝑦̂ = ∑ 𝛼𝑗𝐵𝑗(𝑥; 𝑣 = 2)

20

𝑗=1

 

𝑦̂ = 13.68 (
𝑥

3.00
𝐵1(𝑥; 1) −

𝑥−4.80

1.80
𝐵2(𝑥; 1)) + 13.68 (

𝑥−3.00

1.80
𝐵2(𝑥; 1) −

𝑥−5.60

0.80
𝐵3(𝑥; 1)) + 

𝑦̂ = 13.69 (
𝑥−4.80

0.80
𝐵3(𝑥; 1) −

𝑥−6.60

1.00
𝐵4(𝑥; 1)) + ⋯ + 14.45 (

𝑥−15.00

1.00
𝐵18(𝑥; 1) −

𝑥−19

3.00
𝐵19(𝑥; 1)) + 

         14,57 (
𝑥 − 16,00

3,00
𝐵19(𝑥; 1)) 

𝑦̂𝑦̂ = 4.56𝑥𝐵1(𝑥; 1) − (7.60𝑥 − 36.48)𝐵2(𝑥; 1) + ⋯ + (4.86𝑥 − 70.71)𝐵19(𝑥; 1) 

 

c) Quantile Regression Model for the 0,6th Quantile: 

𝑦̂ = ∑ 𝛼𝑗𝐵𝑗(𝑥; 𝑣 = 2)

20

𝑗=1

 

𝑦̂ = 13.96 (
𝑥

3.00
𝐵1(𝑥; 1) −

𝑥−4.80

1.80
𝐵2(𝑥; 1)) + 13.96 (

𝑥−3.00

1.80
𝐵2(𝑥; 1) −

𝑥−5.60

0.80
𝐵3(𝑥; 1)) + 

𝑦̂ = 13.99 (
𝑥−4.80

0.80
𝐵3(𝑥; 1) −

𝑥−6.60

1.00
𝐵4(𝑥; 1)) + ⋯ + 14.71 (

𝑥−15.00

1.00
𝐵18(𝑥; 1) −

𝑥−19

3.00
𝐵19(𝑥; 1)) + 

         14.84 (
𝑥 − 16.00

3.00
𝐵19(𝑥; 1)) 

𝑦̂𝑦̂ = 4.65𝑥𝐵1(𝑥; 1) − (7.76𝑥 − 37.23)𝐵2(𝑥; 1) + ⋯ + (4.95𝑥 − 79.15)𝐵19(𝑥; 1) 

d) Quantile Regression Model for the 0,8th Quantile: 

𝑦̂ = ∑ 𝛼𝑗𝐵𝑗(𝑥; 𝑣 = 2)

20

𝑗=1

 

𝑦̂ = 14.26 (
𝑥

3.00
𝐵1(𝑥; 1) −

𝑥−4.80

1.80
𝐵2(𝑥; 1)) + 14.26 (

𝑥−3.00

1.80
𝐵2(𝑥; 1) −

𝑥−5.60

0.80
𝐵3(𝑥; 1)) + 

𝑦̂ = 14.29 (
𝑥−4.80

0.80
𝐵3(𝑥; 1) −

𝑥−6.60

1.00
𝐵4(𝑥; 1)) + ⋯ + 15.06 (

𝑥−15.00

1.00
𝐵18(𝑥; 1) −

𝑥−19

3.00
𝐵19(𝑥; 1)) + 

         15,20 (
𝑥 − 16,00

3,00
𝐵19(𝑥; 1)) 

𝑦̂𝑦̂ = 4.75𝑥𝐵1(𝑥; 1) − (7.92𝑥 − 38.03)𝐵2(𝑥; 1) + ⋯ + (5.07𝑥 − 81.07)𝐵19(𝑥; 1) 

 

Next, we calculate the estimated per capita expenditure at several average years of schooling of a 
person indicating a certain level of education. Some of the education levels used in the estimation of per 
capita expenditure include 0 years (no/never been to school), 6 years (elementary school/equivalent), 9 
years (junior high school/equivalent), 12 years (senior high school/equivalent), 13 years (Diploma I/II), 
15 years (Academy/Diploma III), 16 years (Diploma IV/Bachelor's degree), 18 years 
(Master's/Secondary degree) and 22 years (Doctoral degree).  
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Table 4. Estimated value of household expenditure by average years of schooling at the 0.2, 0.4, 0.6 
and 0.8 quantiles 
Mean Years 
School (Years) 

Estimated Expenditure Per Capita (IDR) 

τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8 

0 652,763 870,933 1,161,264 1,561,410  

6 700,668 916,594 1,224,790 1,640,104  

9 747,844 1,003,746 1,310,239 1,722,746  

12 926,936 1,284,359 1,670,244 2,277,320  

13 1,064,952 1,458,297 1,897,447 2,621,560  

15 1,405,692 1,880,033 2,448,779 3,473,975  

16 1,614,991 2,134,664 2,781,887 3,999,060  

18 2,131,721 2,752,004 3,590,205  5,299,431  

19 2,449,122 3,124,704 4,078,582  6,100,431  

Source: Susenas March 2020 BPS  

Table 4 informs that in the 0.2 quantile, household members with an average year of schooling of 
0 years have a per capita expenditure of IDR 652,763, while household members with an average year 
of schooling of 6 years have a per capita expenditure of IDR 700,668, and so on until household 
members with an average year of schooling of 19 years have a per capita expenditure of IDR 2,449,122. 
In the 0.4th quantile shows members who have never been to school have per capita expenditure of IDR 
870,933, household members with an average length of schooling of 6 years will have per capita 
expenditure of IDR 916,594, and so on until household members with an average length of schooling of 
19 years have per capita expenditure of IDR 3,124,704. In the 0.6th quantile shows members who do 
not / have never been to school have per capita expenditure of IDR 1,161,264, household members with 
an average length of schooling of 6 years will have per capita expenditure of IDR 1,224,790, and so on 
until household members with an average length of schooling of 19 years have per capita expenditure 
of IDR 4,078,582. At the 0.8 quantile, members who have never been to school have a per capita 
expenditure of IDR 1,561,410, household members with an average year of schooling of 6 years will 
have a per capita expenditure of IDR 5,299,431, and so on until household members with an average 
year of schooling of 19 years have a per capita expenditure of IDR 6,100,431. 

Based on the estimated per capita expenditure in each quantile, the classification of households 
based on average years of schooling and per capita household expenditure in Kalimantan Tengah 
Province in 2020 will be determined. The classification for each average years of schooling are as 
follows: 

▪ ‘Very poor’ if the per capita expenditure is less than IDR 652,763. 

▪ ‘Poor’ if the per capita expenditure is between IDR 652,763 and IDR 870,933. 

▪ ‘Middle’ if the per capita expenditure is between IDR 870,933 and IDR 878,788.91. 

▪ ‘Rich’ if the per capita expenditure is between IDR 878,788.91 and IDR 1,161,264; and 

▪ ‘Very rich’ if the per capita expenditure is above IDR 1,161,264. 

The complete classification of households with an average year of schooling of 6 years, 9 years, 12 
years, 13 years, 15 years, 16 years, 18 years and 19 years is presented in Table 5.  

Figure 5 illustrates the relationship between the average years of schooling on the x-axis and 
household expenditure on the y-axis at 95 percent significance level. The solid red line in Figure 5 (a) 
represents the estimated trend of household expenditure, while the dashed lines likely represent 
confidence intervals around the trend estimate of household espenditure in quantile = 0.2. The dashed 
yellow line in Figure 5 (b) represents the estimated trend of household expenditure, while the dashed 
lines likely represent confidence intervals around the trend estimate of household espenditure in quantile 
= 0.4. The dashed purple line in Figure 5 (c) represents the estimated trend of household expenditure, 
while the dashed lines likely represent confidence intervals around the trend estimate of household 
espenditure in quantile = 0.6. The dashed black line in Figure 5 (d) represents the estimated trend of 
household expenditure, while the dashed lines likely represent confidence intervals around the trend 
estimate of household espenditure in quantile = 0.8. The detail of convidence intervals each quantile 
presented in Table 6. 
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Table 5. Classification of households by average years of schooling and per capita expenditure 

Mean 

Years 

School 

(Years) 

Estimated Expenditure per Capita (IDR) 

Very Poor Poor Midle Rich Very Rich 

0 < 652,763 652,763 - 870,933 870,933 - 1,161,264 1,161,264 - 1,561,410 > 1,561,410 

6 < 700,668 700,668 - 916,594 916,594 - 1,224,790 1,224,790 - 1,640,104 > 1,640,104 

9 < 747,844 747,844 - 1,003,746 1,003,746 - 1,310,239 1,310,239 - 1,722,746 > 1,722,746 

12 < 926,936 926,936 - 1,284,359 1,284,359 - 1,670,244 1,670,244 - 2,277,320 > 2,277,320 

13 < 1,064,952 1,064,952 - 1,458,297 1,458,297 - 1,897,447 1,897,447 - 2,621,560 > 2,621,560 

15 < 1,405,692 1,405,692 - 1,880,033 1,880,033 - 2,448,779 2,448,779 - 3,473,975 > 3,473,975 

16 < 1,614,991 1,614,991 - 2,134,664 2,134,664 - 2,781,887 2,781,887 - 3,999,060 > 3,999,060 

18 < 2,131,721 2,131,721 - 2,752,004 2,752,004 - 3,590,205 3,590,205 - 5,299,431 > 5,299,431 

19 < 2,449,122 2,449,122 – 3,124,704 3,124,704 – 4,078,582 4,078,582 – 6,100,431 > 6,100,431 

Source: Susenas 2020 March 

The four graphs collectively illustrate a distinct pattern in the expenditure distribution of 
households based on their average years of schooling. At lower levels of education, particularly when 
the average year of schooling is between 0 to 6 years, the range of household expenditures is relatively 
broad. This indicates a high variability in spending among households with minimal education; some 
households may have very low expenditures, possibly due to limited income-earning opportunities, 
while others might still maintain moderate levels of expenditure despite lower education levels. This 
variability suggests diverse economic situations even among households with similarly low education. 

Overall, this pattern demonstrates that both low and high education levels are associated with 
greater variability in household expenditure, while households with moderate levels of education (6-13 
years) exhibit more consistent expenditure levels. The findings imply that education significantly 
influences economic stability and expenditure behavior, with moderate education levels fostering a more 
uniform economic condition among households, while very low or very high education levels lead to a 
wider range of economic outcomes.  

  

(a) Quantile (τ) = 0.2 (b) Quantile (τ) = 0.4 

  

(c) Quantile (τ) = 0,6 (d) Quantile (τ) = 0,8 

Figure 5. Interval of quantile regression curves with COBS for each quantile: (a) 0.2nd quantile; (b) 

0.4th quantile; (c) 0.6th quantile; (d) 0.8th quantile 
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Table 6 presents the lower and upper bounds of household expenditure by average years of 
schooling in each quantile. All lower and upper bounds show an increasing trend both from the lowest 
average years of schooling (0 years) to the highest average years of schooling (19 years) and an 
increasing trend from the 0.2 to the 0.8 quantile. This indicates that there is an Increase Constrained 
assumption in the average years of schooling data that significantly affects the increase in per capita 
household expenditure. 

 

Table 6. Lower and upper bound of per capita household expenditure by average years of schooling 
and quantiles 

Mean 

Years 

School 

(Years) 

Estimated Expenditure Per Capita (IDR) 

Quantile (τ) = 0.2 Quantile (τ) = 0.4 Quantile (τ) = 0.6 Quantile (τ) = 0.8 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

0 610,644 697,788  816,621 928,857  1,098,394  1,227,733  1,465,592 1,663,509  

6 677,720 724,393 887,594 946,532  1,191,222  1,259,304  1,589,055  1,692,792  

9 725,474 770,905  974,744  1,033,612  1,277,455  1,343,878  1,673,771  1,773,153  

12 889,345 966,117  1,234,048 1,336,734  1,613,522  1,728,942  2,189,536  2,368,625  

13 1,016,179 1,116,077  1,393,766  1,525,831  1,824,634 1,973,146  2,507,408  2,740,909  

15 1,324,864 1,491,451  1,775,584 1,990,646  2,330,702  2,572,812 3,284,024 3,674,913  

16 1,512,100 1,724,883 2,003,227 2,274,703  2,633,173  2,938,971  3,756,770 4,257,020  

18 1,968,613 2,308,365 2,548,435 2,971,805  3,359,457  3,836,765  4,913,613 5,715,487 

19 2,245,772 2,670,884 2,873,870 3,397,397  3,793,957  4,384,517  5,618,414 6,623,801  

Source: Susenas 2020 March 

4. Conclusion 

This research draws several conclusions regarding household expenditure and schooling through 
the quantile regression model formed by the COBS method. The model is divided into four quantiles—
0.2, 0.4, 0.6, and 0.8—with all coefficients displaying an increasing trend both from the smallest knot 
to the largest knot and across quantiles from smallest to largest. Meanwhile, the estimated per capita 
household expenditure shows a similar upward trend along these quantiles and knots. Additionally, 
based on the estimated values of household expenditure per capita and average years of schooling, 
households can be classified economically as very poor, poor, middle class, rich, and very rich. This 
classification suggests that higher average years of schooling among household members significantly 
influence increased per capita expenditure. In other words, household members with a higher level of 
education have a higher level of welfare. Quantile regression modelling with COBS is still limited to 
using only one predictor variable, it is better to use other methods such as P-Spline which can 
accommodate the use of more than one predictor variable. 
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