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distribution’s parameters across various datasets.

1. Introduction

The normal or Gaussian distribution is one of the most widely used statistical distributions.
However, many real-world datasets exhibit skewness or fat tails, often resulting from outliers or other
underlying factors. The symmetrical and mesokurtic nature of the normal distribution may not always
align with the characteristics of real-world data, particularly those exhibiting skewness or non-normal
kurtosis. Applying the normal distribution to non-normally distributed data, such as those with skewness
or differing kurtosis, can lead to inaccurate inferences, as it fails to capture the underlying characteristics
of the data adequately [1].

Modifying the normal distribution can overcome its limitations, yielding a more flexible model
capable of accommodating diverse data characteristics [2]. Several methods exist for achieving this
modification, including directly altering the probability density function (PDF) of the normal
distribution [2], [3], applying Tukey’s-gh transformation[4], [5], and employing the compounding
method [6], [7]. These modifications can alter the distribution's symmetry and kurtosis, controlled by
additional parameters introduced into the model [1]. For instance, in the skew-normal distribution, an
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added skewness parameter allows for the control of skewness, with changes to this parameter directly
altering the distribution's asymmetry [3].

Amemiya [8] proposed that the logistic distribution serves as an approximation of the standard
normal distribution. Building upon this foundation, Iriawan [9] extended the concept to model skewed
non-normal data by utilizing the Burr II distribution [10], which is a more flexible generalization of the
logistic distribution. These distributions were termed 'neo-normal’ by Iriawan [9].

Neo-normal distributions represent a class of distributions that either are inherently normal or can
approximate normality under specific conditions [1], [9], [11]. For instance, the MSNBurr distribution
can closely approximate normality when symmetric, the skew-normal distribution converges to the
standard normal distribution when its skewness parameter is zero (indicating symmetry), and the
exponential power distribution becomes identical to the normal distribution when its shape parameter
results in a kurtosis of 3 (the kurtosis of a normal distribution, also known as mesokurtic).

The MSNBurr-Ila distribution extends the MSNBurr distribution to handle cases with opposite
skewness characteristics [1]. Derived from the Burr-1la distribution [12], the MSNBurr-Ila distribution
is better suited for accommodating right-skewed data than left-skewed data. MSNBurr-Ila can estimate
both symmetrical and skewed data distributions[1]. The parameters represent the shape, location, and
scale parameters of the MSNBurr-Ila distribution «, p, and o, respectively. The shape parameter is
related to variations in its skewness. Currently, the specific values of each parameter for the MSNBurr-
IIa distribution are unknown. Consequently, estimation is required to determine these parameter values.

There are two primary methods for estimating parameters in statistics: the frequentist and Bayesian
approaches [13]. The Bayesian approach is preferred in this study because it offers more flexible results
than the frequentist method, particularly in handling complex models and incorporating uncertainty.
This approach incorporates prior knowledge about the parameters, combining it with observed data to
produce a probability distribution of the parameters after the data are observed, known as posterior
distribution. While standard Bayesian calculations can become more complex and time-consuming
when dealing with a larger number of parameters and data [14], advancements in user-friendly software,
such as MultiBUGS, driven by scientific and technological progress, have made the Bayesian approach
readily accessible.

Bayesian inference using Gibbs Sampling (BUGS) is a project developed to facilitate the
implementation of Bayesian inference. The advantages of BUGS compared to other Bayesian software
include ease of use and speed. It also has a model visualization feature called Doodle, which simplifies
model understanding and analysis [15]. The latest and fourth version of the BUGS program is
MultiBUGS. MultiBUGS was developed to address computational problems in previous software by
employing an MCMC parallelization strategy. MultiBUGS can run on Linux and is fully implemenH
within other statistical programs, such as R [14], [16].

Currently, only 29 theoretical distributions are available in MultiBUGS, although the program
includes many specialized distributions, such as those for temporal, spatial, and reliability modeling.
However, because MultiBUGS is open-source, users can modify the application as needed. Extensions
to MultiBUGS can be implemented through the BlackBox Components Builder, an open-source Pascal-
based Integrated Development Environment (IDE). BlackBox provides tools for creating module-based
documents, assembling and running modules, and developing user interfaces, enabling users to
customize MultiBUGS according to their specific requirements.

To address the absence of the MSNBurr-Ila distribution in MultiBUGS, we developed an
MSNBurr-Ila distribution module. This addition aims to simplify the parameter estimation process for
the MSNBurr-Ila distribution using the Bayesian approach, making it more accessible and user-friendly.
The module underwent rigorous testing to ensure its functionality and accuracy. An example application
involving real-world data with symmetry issues, for which the normal distribution is unsuitable,
demonstrates the use of the module.

The addition of the MSNBurr-Ila distribution in MultiBUGS provides significant advantages for
modeling heavy-tailed data, offering flexibility in handling both symmetric and asymmetric
distributions. Compared to traditional distributions like the normal or logistic, MSNBurr-Ila allows
better modeling of extreme values and heteroskedasticity, making it particularly useful for real-world
data that exhibit high variability.

Beyond MultiBUGS, this distribution has also been integrated into other Bayesian software.
Specifically, the R package neodistr extends support for Stan, while the R package neojags adds it to
JAGS. These implementations enable Bayesian practitioners to leverage MSNBurr-Ila across multiple
platforms, ensuring robust statistical modeling for diverse data structures.
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2. Material and Methods

2.1. Bayesian Method

The Bayesian method is an inference method derived from Bayes' Theorem, where parameter
values are unknown and treated as random variables [14],. These random variables are expressed using
probability distributions: f(0) represents the prior distribution and f(6|x) represents the posterior
distribution. The prior distribution reflects existing knowledge or beliefs about the parameters before
analyzing the data (x) [8]. The posterior distribution is obtained by updating the prior distribution with
observed data using Bayes' Theorem. The equation for the posterior distribution is

) (6)
FOR) =50
« F(XIOF (). M

2.2. MSNBurr-Ila Distribution

The probability density function of the MSNBurr-Ila distribution is given by
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which « is a shape parameter, u is location parameter, o and is a scale parameter. If @ > 1 then data is

left-skewed, if @ = 1 then data is symmetric, and if 0 < ¢ < 1 then data is right-skewed. The mean,
variance, mode, skewness, excess kurtosis, and quantile of the MSNBurr-Ila distribution can be
computed using formulas (4)-(9), respectively.
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where 0 < u < 1, o follows equation (3), and ¥°(.) is Y*(.), Y?(.),3(.) are digamma, trigamma,
tetragamma, and pentagamma functions, respectively [1].

2.3.  Deviance Information Criterion (DIC)

The Deviance Information Criterion (DIC), a widely used Bayesian model selection criterion,
assesses model validity and goodness of fit. It balances model complexity and goodness of fit to the
observed data. In the BUGS program, DIC is automatically calculated and can be used to compare
different models. The model with the smallest DIC value is preferred, as it indicates the best fit to the
data. DIC is calculated as
DIC = D+ Pp (10)
where D is the posterior mean of the deviance and Py is the adequate number of parameters.
(See [17] for further details).
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2.4.  MSNBurr-Ila Distribution Module Development

The research began by analyzing the requirements for a functional MSNBurr-Ila distribution
module within MultiBUGS. This analysis informed the module's design, which was then implemented
using Pascal and the "Univariatetempl.odc" template file. The following adjustments were made to the
template to accommodate the MSNBurr-Ila distribution: (1) Module initiation adjustments, (2)
Parameter adjustments in all procedures, (3) Equation changes in several procedures, including
ClassifyPrior, DevianceUnivariate, DifflLogLikelihood, DifflLogPrior, LogLikelihood-Univariate,
LogPrior, Cumulative, and Sample, (4) Addition of procedures for generating random values from the
MSNBurr-Ila distribution in “Randnum.odc” file, (5) Updating "The 'Cumulative.odc' file with a new
procedure to compute the cumulative distribution function of the MSNBurr-lla distribution, (6)
Updating The 'External.odc', 'Make.odc', and 'Linking.odc' files to incorporate 'GraphMSNBurr2a',
allowing the MSNBurr-Ila distribution module to be accessed and utilized, and (7) Modification of the
'Strings.odc' file to include the parameters and default values for the MSNBurr-Ila distribution, enabling
its graphical representation within the software.

The next step involved rigorous testing and validation of the developed module to ensure its
functionality and accuracy for practical use. This testing process consisted of two main steps: First, the
MSNBurr-Ila distribution module was tested to ensure proper compilation and the absence of coding
errors. This was achieved by running the module through Doodle, MultiBUGS's graphical interface for
model visualization. The absence of error messages indicated a successful compilation. Second, the
probability values generated by the module were validated by comparing them with equivalent
calculations performed in the R programming language, using identical input parameters. This aimed to
ensure the accuracy of the probability calculations within MultiBUGS. The validation used the absolute
difference in cumulative distribution function (CDF) and probability density function (PDF) values,
following the approach used by Annis et al. [18] for adding distributions to the Stan program. More
minor absolute differences indicate higher accuracy in the MultiBUGS.

After confirming the module's functionality and accuracy, the next step focused on its
implementation for simulated and real-world data. Simulation data was used to assess the performance
of the MSNBurr-Ila distribution in accurately modeling data with various characteristics, including
right-skewed, symmetrical, and left-skewed data. Normal distribution simulations served as a
benchmark for comparison. Simulation data is generated from the distribution of MSNBurr-Ila for three
scenarios with varying degrees of skewness. Scenario 1 for right-skewed data is MSNBurr-11a(0,1,0.1),
Scenario 2 for symmetrical data is MSNBurr-Ila (0,1,1), and Scenario 3 for left-skewed data is
MSNBurr-11a(0,1,3). Additionally, Scenario 4 is normal(0,1). Each scenario comprised 1,000
simulated samples.

For real-world application, the module analyzed the economic growth rate of districts/cities in
Indonesia in 2021. This data was used because it has a non-normal distribution, thus demonstrating the
advantages of the MSNBurr-Ila distribution. This application involved several steps: First, the economic
growth rate data was examined using the Shapiro-Wilk test for normality and the skewness coefficient
to understand its characteristics and determine the degree of skewness. Second, the parameters of the
MSNBurr-Ila distribution were estimated using the developed module in MultiBUGS. Convergence of
the estimation process was assessed through trace plots, which visually display the sampled values of
the parameters over time. Finally, the model was validated by comparing the characteristics of the fitted
MSNBurr-Ila distribution (e.g., mean, variance, and skewness) with the observed characteristics of the
economic growth rate data. This comparison, which included visual assessments of histograms,
evaluated the model's goodness of fit and ability to represent the real-world data accurately.

3. Results and Discussion
3.1. Requirements

The necessary conditions in MultiBUGS can be identified by examining the functions and
conditions in existing distribution modules, such as the normal and logistics distribution modules,
which served as references for developing the MSNBurr-Ila distribution module. To create a new
module in MultiBUGS, the following are required:
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1. The MultiBUGS source code, including a template for new distribution modules and necessary
modules (see Figure 3)
2. BlackBox component builder v1.7 from Oberon Microsystems (http://www.oberon.ch).

3. Mathematical formulas, including formulas for the log-likelihood, its derivatives, random variate
generation, and the cumulative distribution function.

3.2.  Module Design

The MSNBurr-Ila module in MultiBUGS is developed using the 'univariatetemp.odc' file
template. To adhere to the MultiBUGS architecture, modifications are made not only to the
'Univariatetemp.odc' file but also involve adding or modifying code in several other files, including
'Randnum.odc', 'Cumulative.odc', 'External.odc', 'Make.odc', 'Linking.odc', 'Strings.odc'. The files
modified within the architecture are highlighted in the diagram in Figure 1. Green indicates folders,
while purple highlights indicate the files requiring modification.

For consistency, we change the parameter o to T, where T = i This change affects the
probability density function (pdf). The pdf of the MSNBurr-Ila distribution after parameter changes is
as follows.

exp(wr(x—u))) —(a+1)
a

fxlw,u1,a) = wtexp(wt(x —p)) (1 + (11)
where w follow equation (3). Changes in the PDF will cause changes to the other equations used,
namely, as follows.

1. The natural logarithm of the probability density function

ln(f(x)) = In(w) +log(t) + wt(x —pu) — (1 — @) log(l + M) (12)
2. The natural logarithm of the unnormalized probability density function

ln(p(x)) = wtlx —u)— (1 —a)log (1 + M) (13)
3. The natural logarithmic derivative of the probability density function for variable X

log(f() = — = 14

4. Partial derivative of parameter a

Kl _ exp(wt(x—p))(-1-a) _ exp(wt(x—p))
Y log(f(x)) - (exp(m;z(x—u))+1)a2 log (_ PR + 1) (15)

5. Partial derivative of parameter u

9 _ awt(exp(wt(x—p))-1)

au log(f(x)) - exp(wt(x—pw) )+a (16)
6. Partial derivative of parameter

d _ w(-1-a)(x—w exp(wt(x-pw) , 1
Elog(f(x)) - a(exp(wr(x—lt))_'_l) + T + w(x - ‘Ll) (17)

7. Quantile
1 _1
X = p+— log(a)+log((1—u) a—1) (18)
8. Cumulative distribution function_
Flx) =1 - (1 - 22eremw)) (19)

Making doodles the MSNBurr-Ila distribution in MultiBUGS requires a list of parameters used
in the MSNBurr-Ila distribution: location parameter, rate parameters, shape parameters, and the default
values of each parameter. along with the default values of each. The default values used are O for the
location parameter, 1.0 X 10~3 for the rate parameter and 0.1 for the shape parameter. The diagram
illustrating the relationships between modules in creating the MSNBurr-Ila distribution module is
visualized in Figure 1.
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Figure 1. Diagram of the relationship between modules in the creation of the MSNBurr-Ila distribution
module

3.3. Module Development

During the module creation stage, the module code will be written according to the design and
equations prepared during the module design stage. The module is created using the
"Univaritetemp1l.odc" template in the MultiBUGS-master file. The code template is written in Pascal
and displayed in black, red, and green colors. Lines of code in green and enclosed by (* ... *) are not
executed by the program, as they are comments. Lines of code in black should not be changed except
for definitions added. Lines of code in red can be modified according to the user's needs.

The MSNBurr-Ila distribution module-file will be written in a new file named
"MSNBurr2a.odc". An example of the beginning code in the file "MSNBurr2a.odc" can be seen in
Figure 2. This file is saved in the “Graph\mod” folder

The MSNBurr-Ila distribution module is initiated at the beginning of the file, first by naming
the module "GraphMSNBurr2a". This name is chosen because the module will be stored in the Graph
folder for the MSNBurr-Ila distribution. After naming the module, the folders used in the MSNBurr-
lla distribution module are specified: the Math folder, which stores mathematical function modules,
and the Stores folder for storage in the IMPORT function. The TYPE function declares the data types
of the nodes and parameters that will be used. Next, the Factory function is an abstract class to create
nodes in the graphical model. A constant is also declared, specifically £ (eps), with a value of
1.0 X 1071°, Finally, variables are declared, namely fact, version, and maintainer.

MODULE GraphMSNBurr2a;

IMPORT
Math, Stores := Stores64,
GraphNodes, GraphRules, GraphStochastic, GraphUnivariate,
MathCumulative, MathFunc, MathRandnum;

TYPE

Node = POINTERTO RECORD(GraphUnivariate.Node)
mu, tau, alpha: GraphNodes.Node
END;

Factory = POINTERTO RECORD(GraphUnivariate.FactorylEND

CONST
eps = 1.0E-10;

VAR
fact-: GraphUnivariate.Factory;
version-: INTEGER;
maintainer-: ARRAY 40 OF CHAR;

Figure 2. Code of the beginning part of the file “MSNBurr2a.odc”
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The BoundsUnivariate procedure establishes that the distribution is a continuous univariate
distribution, with a domain of (—o0,0). The CheckUnivariate procedure verifies if the distribution is
univariate and checks compliance with the MSNBurr-Ila distribution. These requirements dictate that
the parameters T and @ must be positive. If 7 < -€ and a < -€, an error will be triggered, indicating that
the second and third arguments contain non-positive parameters (which is invalid for this distribution).
The code implementing the BoundsUnivariate and CheckUnivariate procedures within the
"MSNBurr2a.odc" file is shown in Figure 3.

PROCEDURE(node: Node) CheckUnivariate(): SET;
BEGIN
IF node .tau.value < - eps THEN
RETURN{GraphNodes.posative GraphNodes.arg2,
END;
IF node .alpha.value < -eps THEN
RETURN{GraphNodes.posative GraphNodes.arg3
END;
RETURN({}
END CheckUnivariate;

Figure 3. Code of boundsunivariate and checkunivariate procedure in “MSNBurr2a.odc”

The ClassifyLikelihoodUnivariate procedure classifies the likelihood of a distribution by
examining the parent nodes of each parameter (a, u, and 7). Other parts of the MultiBUGS system
likely use this classification to determine how to handle the distribution during calculations and
statistical inference. The parent nodes of parameters are categorized by the ClassFunction, which is
found in the "Stochastic.odc" file (Figure 4).

PROCEDURE(node: Node) ClassifyLikelihoodUnivariate(parent: GraphStochastic.Node):INTEGER
VAR
density, density0, density1, f0,f1:INTEGER
BEGIN
fO := GraphStochastic.ClassFunction(node.mu, parent);
f1:= GraphStochastic.ClassFunction(node.tau, parent);
CASE f0 OF
|GraphRules.const:
density0 := GraphRules.unif
|GraphRules.ident, GraphRules.prod, GraphRules.linear:
density0 := GraphRules.logCon

|GraphRules.other:

density0 := GraphRules.general
ELSE

density0 := GraphRules.genDiff
END;

density1 := GraphRules.ClassifyShape(f1);

IF density0 = GraphRules.unif THEN
density = density1

ELSIF density1 = GraphRules.unif THEN
density := density0

ELSIF (densityO # GraphRules.general)& (density1 # GraphRules.general) THEN
density := GraphRules.genDiff

ELSE

density := GraphRules.general
END;
RETURN(density

END ClassifyLikelihoodUnivariate;

Figure 4. Code of classifylikelihoodunivariate procedure in “MSNBurr2a.odc”

The ClassifyPrior procedure, as shown in Figure 5, returns a value indicating that the prior for
the MSNBurr-Ila distribution is logCon (log-concave). This suggests that the parameters of this
distribution are assumed to have priors belonging to the log-concave distribution family. The Cumulative
procedure calculates the cumulative probability for the MSNBurr-Ila distribution, using Equation (19)
for the cumulative distribution function.
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PROCEDURE(node: Node)ClassifyPrior (): INTEGER;
VAR
class : INTEGER;
BEGIN
class := GraphRules.logCon;
RETURNCclass
END ClassifyPrior;

PROCEDURE(node: Node) Cumulative (x: REAL): REAL;
VAR
cumulative, mu, tau, alpha, omega: REAL,;
BEGIN
mu := node.mu.value;
tau := node tau.value;
alpha := node.alpha.value;
omega := Math.Power(1 + (1/alpha), (1 + alpha))/ Math.Sqrt(2.0 * Math.Pi());
cumulative := 1 - Math.Power((1+ (Math.Exp(omega * (x-mu) * tau))/ alpha), -alpha)
RETURNcumulative;
END Cumulative;

Figure 5. The code of classifyprior dan cumulative procedure in “MSNBurr2a.odc”

The DevianceUnivariate procedure (Figure 6) defines the distribution's deviance, which is
calculated as negative two times the logarithm of the probability density function, as described in
Equation (12). This procedure is also commonly used in calculating the Deviance Information Criterion
(DIC).

PROCEDURE(node: Node)DevianceUnivariatg): REAL;
VAR
logDensity, logTau, logOmega, logExp, mu, tau, alpha, x, omega: REAL;
BEGIN
X = node.value;
mu := node.mu.value;
tau := node tau.value;
alpha := node.alpha.value;
omega = Math.Power(1 + (1/alpha), (1 + alpha))/ Math.Sqrt(2.0 * Math.Pi());
logTau := MathFunc.Ln(tau);
logOmega = MathFunc.Ln(omega);
logDensity := logOmega + logTau + (omega*(x-mu)*tau)- (1 + alpha) * Math.L.n(1.04
(Math.Exp(omega*(x-mu)*tau))/ alpha);
RETURN-2.0 * logDensity;
END DevianceUnivariate;

Figure 6. The code of devianceunivariate procedure in“MSNBurr2a.odc”

The DiffLogLikelihood procedure calculates the derivative of the log-likelihood function
concerning each parameter. These derivatives are defined in Equations (15), (16), and (17). The
DiffLogPrior procedure calculates the derivative of the log probability density function for the
MSNBurr-Ila distribution, based on the random variable X. In the context of the MSNBurr-Ila
distribution, this derivative refers to the log of the probability density function (log-pdf) concerning the
variable X, as defined in Equation (14). The DiffLogLikelihood and DiffLogPrior procedures are shown
in Figures 7 and 8, respectively.
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PROCEDURE(node: Node)DiffLogLikelihood(x: GraphStochastic.Node):REAL;
VAR
mu, tau, alpha, val, omega, differential, diffTau,diffMu, exp, diffAlpha: REAL;
BEGIN
val:= node.value;
mu := node.mu.value;
tau := node tau.value;
alpha := node.alpha.value;
omega = Math.Power(1 + (1/alpha), (1 + alpha))/ Math.Sqrt(2.0 * Math.Pi());
exp = Math.Exp(omega*(val-mu)*tau);
IF (GraphStochastic.hint1 IN x.props) OR (GraphNodes.dataIN node .tau.props) OR (GraphNodes.datj
IN node.alpha.props) THEN
diffMu:= node.mu.Diff(x);
differential:= diffMu* ((alpha * omega * tau * exp - 1)/ (exp + alpha));
ELSIF (GraphStochastic.hint1 IN x.props) OR (GraphNodes.dataIN node.mu.props) OR
(GraphNodes.datalN node .alpha.props) THEN
diffTau:= node.tau.Diff(x);
differential:= diffTau* (((-alpha-1)* omega * (val- mu) * exp) / (alpha * (exp/ alpha + 1)) + (1/tau) +
omega * (val- mu));
ELSIF (GraphStochastic.hint1 IN x.props) OR (GraphNodes.datalN node.mu.props) OR
(GraphNodes.datalN node .tau.props) THEN
diffAlpha := node .alpha .Diff(x);
differential:= diffAlpha * (- (exp * (-1-alpha))/ ((exp/ alpha + 1) * alpha * alpha) - Math.Ln(exp /
alpha + 1));
ELSE
diffMu := node.mu.Diff(x);
diffTau:= node.tau.Diff(x);
diffAlpha := node .alpha.Diff(x);
differential:= (diffMu* ((alpha * omega * tau * exp - 1)/ (exp + alpha)) + (diffTau* (((-alpha-1)*
omega * (val- mu) * exp) / (alpha * (exp/ alpha + 1)) + (1/tau) + omega * (val- mu))) + (diffAlpha * (- (exp *
(-1-alpha))/ ((exp/ alpha + 1) * alpha * alpha) - Math.Ln(exp / alpha + 1))));
END;
RETURNU(ifferential;
END DiffLogLikelihood;

Figure 7. The code of the diffloglikelihood procedure in “MSNBurr2a.odc”

PROCEDURE(node: Node)DiffLogPrion(): REAL;
VAR
differential,exp, mu, tau, alpha, omega, x: REAL;
BEGIN
X := node.value;
mu := node.mu.value;
tau := node.tau.value;
alpha := node.alpha.value;
omega := Math.Power(1 + (1/alpha), (1 + alpha))/ Math.Sqrt(2.0 * Math.Pi())
exp = Math.Exp(omega * (x - mu) * tau);
differential:= (- (alpha * omega * tau *(exp - 1))/ (exp + alpha));
RETURN(differential;
END DiffLogPrior;

Figure 8. The code of the difflogprior procedure in “MSNBurr2a.odc”

The ExternalizeUnivariate procedure, shown in Figure 9, functions to externalize or write the
nodes of each parameter—namely «, u, and 7,—to be stored in Stores. Meanwhile, the
InternalizeUnivariate procedure is used to internalize or read the nodes of each stored parameter. The
InitUnivariate procedure initializes the nodes for the univariate distribution, with the initial value of
each node being NIL.
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PROCEDURE(node: Node) ExternalizeUnivariate (VAR wr: Stores.Writer),
BEGIN
GraphNodes.Externalize (node.mu, wr);
GraphNodes.Externalize (node.tau, wr);
GraphNodes.Externalize (node.alpha, wr);
END ExternalizeUnivariate;

PROCEDURE(node: Node) InitUnivariatg

BEGIN
node.mu := NIL;
node.tau := NIL;

node.alpha = NIL;
END InitUnivariate;

PROCEDURE(node: Node) Internalize Univariate(VAR rd: Stores.Reader)
BEGIN

node.mu := GraphNodes.Internalize(rd);

node.tau := GraphNodes.Internalize(rd);

node.alpha := GraphNodes.Internalize(rd);
END Internalize Univariate;

Figure 9. The code of externalizeunivariate, initunivariate, and internalizeunivariate procedures in
“MSNBurr2a.odc”

The Install procedure in Figure 10 sets up the MSNBurr-Ila distribution, ensuring that the
"MSNBurr2a.odc" file is automatically integrated when the "External.odc" file is compiled. The
Location* procedure retrieves the value of the location parameter, which is y in the MSNBurr-Ila
distribution.

PROCEDURE(node: Node) Install (OUTinstal: ARRAY OF CHAR)
BEGIN

install := "GraphMSNBurr2a.Install"
END Install;

PROCEDURE(node: Node)Location (): REAL;
VAR
mu: REAL;
BEGIN
mu = node.mu.value;
RETURNmMu;
END Location;

Figure 10. The code of install and location procedure in “MSNBurr2a.odc”

The LogLikelihoodUnivariate procedure in Figure 11 is used to compute the log-likelihood
function of the probability density function, as specified in equation (33). This procedure ensures that
the log-likelihood is correctly defined for univariate distributions, essential for accurate Bayesian
computation.

PROCEDURE(node: Node)LogL ikelihoodUnivariate(): REAL;
VAR
logDensity, logTau, logOmega,mu, tau, alpha, x, omega: REAL;
BEGIN
X = node.value;
mu := node.mu.value;
tau := node.tau.value;
alpha := node.alpha.value;
omega = Math.Power(1 + (1/alpha), (1 + alpha))/ Math.Sqrt(2.0 * Math.Pi());
logTau := MathFunc.Ln(tau);
logOmega := MathFunc.Ln(omega);
logDensity := logOmega + logTau + omega*(x-mu)*tau- (1 + alpha) * Math.Ln(1.04
(Math.Exp(omega*(x-mu)*tau)/ alpha));
RETURNIogDensity;
END LogL ikelihoodUnivariate;

Figure 11. The code of loglikelihoodunivariate procedure in “MSNBurr2a.odc”

The LogPrior procedure, as in Figure 12, defines the equation for the log-likelihood function of
the probability density function, which is dependent on the variable X, as specified in equation (31).
This procedure is crucial for incorporating prior distributions into the model, allowing for a
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comprehensive Bayesian analysis by accounting for the influence of prior knowledge on the current
data.

PROCEDURE(node: Node)LogPrior(): REAL;

VAR

X, mu, tau, alpha, omega, logPrior: REAL;

BEGIN

X := node.value;

mu = node.mu.value;

tau = node .tau.value;

alpha := node.alpha.value;

omega = Math.Power(1 + (1/alpha), (1 + alpha))/ Math.Sqrt(2.0 * Math.Pi());

logPrior := omega*(x-mu)*tau- (1 + alpha) * Math.Ln(1.0 + (Math.Exp(omega*(x-mu)*tau)/alpha))
RETURNIogPrior;
END LogPrior;

Figure 12. Source code prosedur logprior in “MSNBurr2a.odc”

The ParentsUnivariate procedure (Figure 13) adds the parents of each parameter node to a list.
The SetUnivariate procedure is used to insert the nodes of each parameter into an array.

PROCEDURE(node: Node)ParentsUnivariate(all: BOOLEAN): GraphNodes.List;
VAR
list: GraphNodes.List;
BEGIN
list := NIL;
node.mu.AddParent(list);
node.tau.AddParent(list);
node .alpha.AddParent(list);
RETURNIist;
END ParentsUnivariate;

PROCEDURE(node: Node) SetUnivariate(IN args: GraphNodes.Args; OUT res: SET)
BEGIN

res == {};

WITHargs: GraphStochastic.Args DO
ASSERT(args.scalars[0]# NIL, 21);
node.mu := args.scalars[0];
ASSERT(args.scalars[1]# NIL, 21);
node.tau := args.scalars[1];
ASSERT(args.scalars[2]# NIL, 21);
node.alpha := args.scalars[2];

END;

END SetUnivariate;

Figure 13. The code of parentsunivariate and setunivariate procedure in “MSNBurr2a.odc”

The Sample procedure shown in Figure 14 defines the sampling method to be used in the
estimation process. If the distribution has no constraints or domain, sampling will use the MSNBurr2a
function from the "Randnum.odc" file in the “Math\mod” folder. If the distribution has constraints or a
domain, sampling will use the MSNBurr2al.B, MSNBurr2aRb, or MSNBurr2alB functions.
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PROCEDURE(node: Node)Sample (OUTres: SET);
VAR
mu, tau, omega, alpha, x, lower, upper: REAL;
bounds: SET;
BEGIN
mu = node.mu.value;
tau = node.tau.value;
alpha := node.alpha.value;
bounds := node.props * {GraphStochastic.leftimposed, GraphStochastic.rightimposed}
IF bounds = {} THEN
x := MathRandnum.MSNBurr2a(mu, tau, alpha);
ELSE
node .Bounds(lower,upper);
IF bounds = {GraphStochastic.leftimposed} THEN
x = MathRandnum.MSNBurr2aLB(mu, tau, alpha, lower);
ELSIF bounds = {GraphStochastic.rightimposed} THEN
x = MathRandnum.MSNBurr2aRB(mu, tau, alpha, upper);
ELSE
x = MathRandnum.MSNBurr2alB(mu, tau, alpha, lower, upper);
END;
END;
node.value = x;
res = {};
END Sample;

Figure 14. The code of the sample procedure in “MSNBurr2a.odc”

The New procedure (Figure 15) is responsible for creating and initializing a new instance of a
Node object, which represents a key element in the probabilistic graphical model used by MultiBUGS.
It allocates memory for the Node, calls its Init method to configure default properties, and returns the
fully initialized object. This process is essential for defining new distributions, as each corresponds to a
unique node in the model's computational graph. The Signature procedure, on the other hand, assigns a
specific identifier ("sssCT") to the distribution or object, where "sss" indicates that the MSNBurr-Ila
distribution has three parameters.

PROCEDURE(f: Factory) New (): GraphUnivariate.Node;
VAR
node: Node;
BEGIN
NEW (node);
node.Init;
RETURNnNode;
END New;

PROCEDURE(f: Factory) Signature (OUTsignature: ARRAY OF CHAR)
BEGIN

signature := "sssCT";
END Signature;

Figure 15. The code of the new and signature procedure in “MSNBurr2a.odc”

The code in Figure 16 defines procedures for initializing and managing a module named
GraphMSNBurr2a. The Init procedure creates a new instance of Factory, sets it to fact, and calls the
Maintainer procedure to assign a version number and maintainer name. The Install procedure sets the
fact object as the factory for GraphNodes, and the entire module begins by calling /nif to initialize its
components.
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PROCEDUREInstall*;
BEGIN
GraphNodes.SetF actory(fact);
END Install;

PROCEDUREMaintainer;
BEGIN

version:= 500;

maintainer := "Eliana P. Ramadani"|
END Maintainer;

PROCEDUREInit;
VAR
f: Factory;

BEGIN
Maintainer;
NEW(f);
fact:=f

END Init;

BEGIN
Init
END GraphM SNBurr2a.

Figure 16. The code of procedure install and signature in “MSNBurr2a.odc”

In addition to creating the MSNBurr-Ila distribution module file, it is necessary to add and
modify code in several other files to support the MSNBurr-Ila distribution module. Code additions to
the "Randnum.odc" file (Figure 17) involve implementing four procedures for generating values
distributed according to the MSNBurr-Ila distribution, which will then be used for sampling during
estimation. The algorithm used in value generation employs the inverse transform method with the
following steps:

1. Generate u from a Uniform(0,1) distribution.
2. Letv=F(a)+ [F(b) —F(a)]u
3. The generated value isx = F~1(v) ,

where F (x) is cumulative distribution function in equation (19) , F(a) is the cumulative probability of
the function when x equals the lower bound of the distribution, F (b) is the cumulative probability when
x equals the upper bound, and x = F~1(v) represents the inverse function as defined in equation (18).

PROCEDUREMSNBurr2a* (mu, tau, alpha: REAL): REAL;

VAR

u, omega: REAL;

BEGIN

u := generator.Rand();

omega := Math.Power((1+ 1/alpha), (1+alpha))/ Math.Sqrt(2 * Math.Pi());

RETURNmMu + (1 /(omega*tau))* (Math.Ln(alpha) + Math.Ln(Math.Power( 1 - u, (-1/alpha))- 1))
END MSNBurr2a;

Figure 17. The code of generate MSNBurr2a distribution in “Randnum.odc”

When a distribution is known to have a lower bound, an upper bound, or both, it will have a
specific generating function for these conditions. The conditional distribution resulting from restricting
the domain of certain other probability distributions is called a truncated distribution. The function for
the truncated distribution is as follows:

f(x)
———— a<x<
fr(x) = {F(b)—F(a)' asxsb (20)

0, others

To calculate F(a) and F(b), we need to compute the value of the CDF of MSNBurr-Ila. The
code for calculating it is written in the file Cumulative.odc in the “Math\Mod” folder, as shown in Figure
18.
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PROCEDUREMSNBurr* (mu, tau, alpha, x: REAL): REAL;
VAR
omega: REAL;
BEGIN
omega := Math.Power(1 + (1/alpha), (1 + alpha))/ Math.Sqrt(2.0 * Math.Pi());
RETURN Math.Power(1+ (Math.Exp(-omega*(x-mu)*tau)/alpha), alpha);
END MSNBuirr;

Figure 18. The code of CDF MSNBurr2a distribution in “Cumulative.odc”

Therefore, the additions to the "Randnum.odc" file for truncated distributions are as follows: for
truncation on the left side, truncation on the right side, and truncation on both sides (Figure 19-21).

1. The distribution is truncated on the left side

PROCEDURE MSNBurr2aLB* (mu, tau, alpha, lower: REAL): REAL;
VAR
u, pLower, omega: REAL;
BEGIN
pLower := MathCumulative.MSNBurr2a(alpha, mu, tau, lower);
u = pLower + (1 - pLower) * generator.Rand();
omega := Math.Power((1 + 1/alpha), (1+alpha)) / Math.Sqrt(2 * Math.Pi());
RETURN mu + (1/(omega*tau)) * (Math.Ln(alpha) + Math.Ln(Math.Power( 1 - u, (-1/alpha)) - 1))]
END MSNBurr2al B;

Figure 19. The code of MSNBurr2alLB procedure in “Randnum.odc”

2. The distribution is truncated on the right side

PROCEDURE MSNBurr2aRB* (mu, tau, alpha, upper: REAL): REAL;

VAR

u, pUpper, omega: REAL;

BEGIN

pUpper:= MathCumulative. MSNBurr2a(alpha, mu, tau, upper);

u = pUpper * generator.Rand();

omega = Math.Power((1 + 1/alpha), (1+alpha)) / Math.Sqrt(2 * Math.Pi());

RETURN mu + (1/ (omega*tau)) * (Math.Ln(alpha) + Math.Ln(Math.Power( 1 - u, (-1/alpha)) - 1))
END MSNBurr2aRB;

Figure 20. The code of MSNBurr2aRB procedure in “Randnum.odc”

3. The distribution is truncated on both sides, the left and right

PROCEDUREMSNBurr2alB*(mu, tau, alpha, lower, upper: REAL): REAL;

VAR

u, pLower, pUpper, omega: REAL;

BEGIN

pLower := MathCumulative.MSNBurr2a(alpha,mu, tau, lower);

pUpper := MathCumulative.MSNBurr2a(alpha,mu, tau, upper);

u := pLower + (pUpper- pLower)* generator.Rand();

omega = Math.Power((1+ 1/alpha), (1+alpha))/ Math.Sqrt(2 * Math.Pi());

RETURNmu + (1/(omega*tau))* (Math.Ln(alpha) + Math.Ln(Math.Power( 1 - u, (-1/alpha))- 1))
END MSNBurr2alB;

Figure 21. The code of MSNBurr2alB procedure in “Randnum.odc”

Code additions to the "External.odc" file (Figure 22), located in the "Bugs\Mod" folder, are
made to integrate the MSNBurr-Ila module so it can be accessed alongside other distributions. These
additions are made within the LOAD procedure. The first addition includes the MSNBurr-Ila univariate
distribution from the previously created module file. The second addition loads the function for the
MSNBurr-Ila cumulative distribution function (CDF). The third addition loads the function for the
MSNBurr-Ila probability density function (PDF). Finally, additional code is added to load the available
deviance function.

Density("dmsnburr2a”, "GraphMSNBurr2a.Install");
Function("pdf.msnburr2a”, "GraphDensity.DensityUVInstall[dmsnburr2a)");
Function("cdf.msnburr2a”, "GraphDensity. CumulativeInstall(dmsnburr2a)");
Function("dev.msnburr2a","GraphDensity.DevianceUVInstall(dmsnburr2a)"

Figure 22. Adding MSNBurr-lia code in “External.odc”

The code additions to "Linking.odc", as shown in Figure 23, are intended to ensure that the
MSNBurr-Ila distribution module can be executed as part of a dynamic-link library. The compilation
process depends on the operating system used, either Linux or Windows. In addition to modifying
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"Linking.odc", code is also added to "Make.odc" (Figure 24) to ensure that the MSNBurr-Ila module
can be compiled and linked correctly along with other programs. The modifications to both files involve
including "GraphMSNBurr2a" (the name of the module) in the same section as the other distribution
files. Both files are in “Developer” folder.

GraphRulesGraphNodes GraphGrammarGraphLogical GraphStochasticGraphLimits
GraphScalar GraphLinkfuncGraphVector GraphParamtransGraphWeight
GraphUnivariateGraphConjugateUVGraphVD GraphCensoring Truncation
GraphMultivariateGraphConjugateMVGraphChain GraphGMRF GraphFunctional
GraphBlock GraphMessages GraphResources GraphMSNBurr2a

Figure 23. Adding graphMSnburr2a in “Linking.odc”

GraphBern GraphBinomialGraphCat GraphFounderGraphGeometric
GraphHypergeometricGraphMendelianGraphNegbin GraphPoisson GraphRecessive
GraphZipf GraphM SNBurr2a

Figure 24. Adding graphMSnburr2a in “Make.odc”

Code additions to the "Strings.odc" file, shown in Figure 25, are made to include a doodle for
the MSNBurr-Ila distribution, facilitating easier visual modeling within MultiBUGS. This addition
involves listing the parameters used in the MSNBurr-Ila module, as defined during the module design
phase. Each parameter is associated with index 17, which corresponds to the assigned sequence number
of the MSNBurr-Ila distribution within the system.

densities[17] dmsnburr2a
param0Q[17] location
param1[17] rate
param2[17] shape
defaultO[17] O
default1[17] 1.0E-3
default2[17] 1

Figure 25. Adding code for MSNburr-lia module in “Strings.odc”

To integrate the MSNBurr-Ila distribution module, MultiBUGS needs to be recompiled. This is
done by opening the "Make.odc" file and clicking the exclamation mark icon (typically used to initiate
the build process). The MSNBurr-Ila distribution module will then be compiled along with other
MultiBUGS components, successfully integrating it into the system. The complete procedure for
compiling MultiBUGS source code is documented at: https://github.com/MultiBUGS/MultiBUGS.

After the module has been created and the necessary changes have been made to other related files,
MultiBUGS should be recompiled using the "Make.odc" file. Once this is done, the MSNBurr-Ila
distribution module will be successfully integrated into MultiBUGS and can be accessed at:
https://github.com/elianaputrir/MultiBUGS-MSNBurr2a.

3.4. Module testing

The module testing phase consisted of five steps: testing of doodle, validation of probability
values, validation of the simulation data density plot, validation of simulation data parameter estimation
results, and comparison of DIC values. This testing ensured that the program ran correctly and produced
the expected results without any detected errors.

Testing of doodle was conducted by running the MSNBurr-Ila distribution with the following
prior distributions for each parameter: normal(0; 1.0 X 10™°) for parameter x, gamma (1000; 1000)
for parameter 7, and uniform(0; 10) for parameters a. Figure 26 visualizes the MSNBurr-Ila distribution
model. Based on this figure, the added MSNBurr-Ila distribution module functioned correctly and ran
without any errors or warnings detected by MultiBUGS.
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name: yli] type stochastic density: dmsnburr2a
location mu rate tau shape alpha lower bound upper bound

‘ —( )
Dy
for(i IN 1 - n) \/®

Figure 26. Visualization of trial model with doodle

Validation of the probability values was performed by comparing the probability density
function (PDF) and cumulative distribution function (CDF) calculations of the MSNBurr-Ila
distribution obtained from MultiBUGS [14] and neodistr package [19] in R that was published in
CRAN. Ten sample points (x) were generated from the MSNBurr-Ila distribution in MultiBUGS using
the parameters 4 = 0,0 = 1, and a = 0.1. The PDF and CDF values were then calculated for these
sample points using both MultiBUGS and the corresponding functions in the neodistr package (Table

).

Table 1. Calculation of the probability value (PDF) and cumulative opportunity value (CDF) of the
MSNBurr-Ila distribution using MultiBUGS and R functions

PDF CDF

X MuliBUGS R Absolute MuliBUGS R Absolute
difference difference

@ ) 3) 4) ) (6) (N
-4.750 0.03467 0.03467 0.00000 0.3191 0.3191 0.00000
-3.137 0.03750 0.03750 0.00000 0.3774 0.3774 0.00000
-10.65 0.02084 0.02085 0.00001 0.1545 0.1545 0.00000
-4.855 0.03446 0.03446 0.00000 0.3155 0.3154 0.00010
16.340 0.01020 0.01020 0.00000 0.9314 0.9313 0.00010
-8.602 0.02574 0.02574 0.00000 0.2022 0.2022 0.00000
-4.278 0.03359 0.03558 0.00001 0.3357 0.3357 0.00000
-4.917 0.03433 0.03433 0.00000 0.3133 0.3133 0.00000
-1.452 0.03936 0.03936 0.00000 0.4423 0.4423 0.00000
11.670 0.01857 0.01857 0.00000 0.8655 0.8656 0,00010
Total 0.00002 Total 0.0003

This close agreement between the two methods indicates that the PDF and CDF values
calculation in MultiBUGS is accurate. However, it's worth noting that this analysis was limited to 10
sample points. Further validation with a larger sample size could provide additional confidence in the
accuracy of the MultiBUGS implementation.

3.5. The Implementation of simulation and real-world data

The simulated data were generated using MultiBUGS with a sample size of 1,000 across four
distinct scenarios. The data of four scenarios are visualized using a density plot, as shown in Figure 27.
This plot displays the distribution of the simulated data for each scenario. The x-axis represents the
simulation data, and the y-axis represents the density. The shape of each curve reflects the probability
density function of the MSNBurr-Ila distribution under the specific parameters of those scenarios.
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Figure 27. Density plot simulation data (a) scenario 1; (b) scenario 2; (c) scenario 3; (d) scenario 4

Figure 27 illustrates the density plots of four scenarios: three scenarios for the MSNBurr-Ila

distribution with varying shape parameters («), and one scenario as the normal distribution. Figures
27(a) through 27(d) display simulated data for right-skewed (scenario 1, @ = 0.1), symmetric (scenario
2, a = 1), left skewed (scenario 3, @ = 3), and normal distribution, respectively. This is consistent with
the theoretical characteristics of the MSNBurr-Ila distribution, that when 0 < a < 1 is a right-skewed
distribution, ¢ = 1 is a symmetrical distribution, and @ > 1 is a left-skewed distribution. Consequently,
the implemented module effectively captures and visualizes the distribution's flexible behavior
Parameter estimation value validation was conducted using four specifically designed simulated
data scenarios. These scenarios encompassed various parameter combinations to assess the performance
of the estimation procedure under diverse conditions. A simplified "trial model" was initially used for
parameter estimation. This model focused on the core components of the MSNBurr-Ila distribution to
ensure efficient convergence and accurate estimation of the key parameters. The following Markov

Chain Monte Carlo (MCMC) settings were employed for parameter estimation:

Table 2. Estimated value of simulation data parameters

. Simulation Estimation Credible Interval
Scenario Parameter Parameter Value MSNBurr-Ila 259 97 5%
parameter
U 0.0 -0.0397 -0.0976 0.0253
1 T 1.0 1.0050 0.9634 1.0490
a 0.1 0.1054 0.0102 0.1185
u 0.0 0.0154 -0.1075 0.1100
2 T 1.0 0.9738 0.9359 1.0130
a 1.0 1.1730 0.9560 1.5210
U 0.0 0.0207 -0.0839 0.1176
3 T 1.0 0.9711 0.9333 1.0090
a 3.0 4.4510 2.5680 7.8240
u 0.0 0.0598 -0.0463 0.1628
4 T 1.0 1.0450 0.9004 1.0880
a - 1.1530 0.8593 1.5330
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1.  Bum-in: 1,000 iterations. This initial period was discarded to remove samples that may not
represent the target distribution.

2. Thinning: 1. Every sample from the chain was kept.

Refresh: 100. The chain was refreshed every 100 iterations to improve mixing.

4. Tterations: 10,000. A total of 10,000 iterations were run, resulting in 9,000 samples for analysis
after the burn-in period. Table 2 Estimated value of simulation data parameters

The average time needed to estimate the four scenarios was 120.3 seconds. Table 2 shows the
values of the three previously determined parameters, all falling within the 95% credible interval. This
indicates that the developed MSNBurr-Ila distribution module can be used for parameter estimation and
produces results as expected.

The Deviance Information Criterion (DIC) is used as an indicator for Bayesian model
evaluation, such as in MultiBUGS. The model with the lowest DIC is generally preferred, as it suggests
a better fit to the data. The MSNBurr-Ila distribution model's DIC will be compared to that of the normal
distribution model when estimating parameters for the four simulated data scenarios.

W

Table 3. DIC value of MSNBurr-Ila distribution and normal distribution

Scenario DIC value A DIC
MSNBurr-Ila Normal

1 3,461.0 4,202.0 741

2 3,128.0 3,140.0 12

3 3,088.0 3,169.0 81

4 2,882.0 2,858.0 24

Table 3 shows that the Deviance Information Criterion (DIC) of the MSNBurr-Ila distribution
was lower than that of the normal distribution in scenarios 1, 2, and 3. However, in scenario 4, the DIC
of the MSNBurr-Ila distribution was higher than that of the normal distribution. This indicates that the
MSNBurr-Ila distribution generally provided a better fit to the non-normal simulated data, with the
greatest improvement in DIC observed for the right-skewed data in scenario 1.

The normal distribution outperformed the MSNBurr-Ila distribution in scenario 4 because the
MSNBurr-Ila distribution tends to have heavier tails than the normal distribution, even when the overall
shape is symmetric. This characteristic may lead to a slightly worse fit when the true data-generating
process has lighter tails [1]. The testing process confirmed the consistency between the data
characteristics and the estimation results. MultiBUGS had detected no errors in any of the testing steps.
Therefore, it can be concluded that the MSNBurr-Ila distribution module created and added to
MultiBUGS functions correctly and produces accurate results.

The MSNBurr-Ila distribution module and its source code have been compiled into a single
MultiBUGS  program  available on  GitHub  https://github.com/elianaputrir/MultiBUGS-
MSNBurr2a/blob/main/MultiBUGS2.zip. Users must install Microsoft MPI before running the
compiled MultiBUGS program from the zip file.

The histogram of the economic growth rate data for districts/cities in 2021 reveals a right-
skewed distribution (Figure 28). This indicates that most districts/cities have lower economic growth
rates, with a few outliers exhibiting much higher rates. This observation is supported by the skewness
test, which yielded a skewness value of 18.8663, significantly greater than 0, confirming the right-
skewed nature of the distribution. Furthermore, the Anderson-Darling normality test confirms that the
data is not normally distributed (p-value < 0.05). This non-normality suggests that standard statistical
methods that assume normality may not be appropriate for analyzing this data, and alternative methods
may need to be considered.
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Figure 28. Histogram of district/city economic growth rate data for 2021
Parameter estimation was performed using 1,000 burn-in, 1 thin, 100 refresh, 10,000 iterations,

and 9,000 samples. The prior for each parameter is normal (0; 1,0E-6) for u, gamma (1000; 1000) for t,
and uniform (0,1; 10) for a.
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Figure 29. Trace plot of the estimated parameter of economic growth rate data for 2021: (a) u; (b) t;

(c)a
Based on the trace plot of the 9.000 generated samples that were shown in Figure 29, the samples
produced in the MCMC output are like fat caterpillars. It is shown that the parameter estimation process
has reached a convergent condition.

Table 4. Summary of parameter estimates for the rate of economic growth data in 2021
Confidence Interval

Parameter Estimation 359 97 5%
u 2.8360 2.6720 2.9940
T 0.7541 0.7193 0.7908
a 0.4182 0.3567 0.4861

The parameters of the MSNBurr-Ila distribution for the economic growth rate data in 2021 were
estimated using Bayesian inference with MCMC sampling in MultiBUGS. The estimation process took
49.938 seconds. Convergence of the MCMC chains was assessed using standard diagnostic tools to
ensure reliable parameter estimates. Using the parameters estimated in Table 4, the mean, variance,
skewness, and kurtosis of the MSNBurr-Ila distribution were derived and presented in Table 5. These
characteristics provide a comprehensive summary of the distribution's shape and properties, which can
be used to further analyze and interpret the economic growth rate data.

Table 5 shows that the estimated skewness of the fitted MSNBurr-Ila distribution is 1.0810,
indicating that the distribution is right-skewed. This is consistent with the value of alpha in Table 5,
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which is less than 1. This finding aligns with the right-skewed shape observed in the histogram of the
economic growth rate data. The agreement between the estimated skewness and the visual representation
of the data suggests that the MSNBurr-Ila distribution effectively captures the characteristics of the
economic growth rate data for regencies in Indonesia.

Table 5. Characteristics of the MSNBurr-Ila distribution of economic growth data for 2021

Characteristics Characteristic Value
Mode 3.4050
Variance 2.7789
Mode 2.8240
Skewnes 1.0810
Kurtosis 2.8590

4. Conclusion

This study successfully integrated the MSNBurr-Ila distribution into MultiBUGS by creating
and compiling a dedicated distribution module. Rigorous testing confirmed the module's functionality
and accuracy. The testing process included: ensuring correct computation of the CDF and PDF,
confirming the module's ability to create doodle without errors, comparing the outputs with the expected
characteristics of the MSNBurr-Ila distribution, assessing the model's fit against the normal distribution.
The results consistently demonstrated the module's correct implementation and the accuracy of its
calculations.

The MSNBurr-Ila distribution was then applied to analyze the economic growth rate data for
regencies in Indonesia in 2021. The analysis revealed that the MSNBurr-Ila distribution effectively
captured the characteristics of the data, particularly its right-skewness, as evidenced by the consistency
between the estimated skewness, the histogram, and the skewness indicator. This successful application
highlights the potential of the MSNBurr-Ila distribution for modeling and analyzing skewed data in
various fields.

Future research can explore several directions to further enhance the applicability and utility of
the MSNBurr-IIa distribution. One potential area is extending its integration into other Bayesian
modeling platforms such as pyMC for broader accessibility. Additionally, further studies can investigate
the performance of the MSNBurr-Ila distribution in different real-world datasets, particularly in
financial risk modeling, survival analysis, and climate data analysis. Moreover, conducting simulations
across various sample size scenarios—ranging from small-scale samples to large-scale datasets—would
provide deeper insights into the model's robustness and efficiency.
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