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Introduction/Main Objectives: The MSNBurr-IIa distribution is a neo-

normal distribution designed to fit right-skewed data better. This article aims 

to integrate the MSNBurr-IIa distribution into MultiBUGS, thereby enabling 

Bayesian estimation of its parameters. Background Problems: Markov Chain 

Monte Carlo (MCMC) is a popular method for Bayesian computations, 

although its implementation is frequently challenging. MultiBUGS, a statistical 

tool that uses the BUGS language, is used to make this easier. Novelty: This 

paper details integrating the MSNBurr-IIa distribution into MultiBUGS, 

allowing for estimating its parameters. The module's effectiveness is 

demonstrated through its application on both simulated data and regional 

economic growth data of Indonesian districts/cities in 2021. Research 

Methods: The MSNBurr-IIa module was developed using five steps: 

requirement, design, development, testing, and implementation in simulation 

and real-world data. It was built with Blackbox Component Builder, an 

integrated development environment (IDE) for the Component Pascal 

programming language. Finding/Results: The findings confirm that 

MultiBUGS, with the MSNBurr-IIa module, successfully estimates the 

distribution’s parameters across various datasets. 

Keywords:  

Bayesian; MCMC; MSNBurr-
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1.  Introduction  

The normal or Gaussian distribution is one of the most widely used statistical distributions. 
However, many real-world datasets exhibit skewness or fat tails, often resulting from outliers or other 
underlying factors. The symmetrical and mesokurtic nature of the normal distribution may not always 
align with the characteristics of real-world data, particularly those exhibiting skewness or non-normal 
kurtosis. Applying the normal distribution to non-normally distributed data, such as those with skewness 
or differing kurtosis, can lead to inaccurate inferences, as it fails to capture the underlying characteristics 
of the data adequately [1].  

Modifying the normal distribution can overcome its limitations, yielding a more flexible model 
capable of accommodating diverse data characteristics [2]. Several methods exist for achieving this 
modification, including directly altering the probability density function (PDF) of the normal 
distribution [2], [3], applying Tukey’s-gh transformation[4], [5], and employing the compounding 
method [6], [7]. These modifications can alter the distribution's symmetry and kurtosis, controlled by 
additional parameters introduced into the model [1]. For instance, in the skew-normal distribution, an 
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added skewness parameter allows for the control of skewness, with changes to this parameter directly 
altering the distribution's asymmetry [3].  

Amemiya [8] proposed that the logistic distribution serves as an approximation of the standard 
normal distribution. Building upon this foundation, Iriawan [9] extended the concept to model skewed 
non-normal data by utilizing the Burr II distribution [10], which is a more flexible generalization of the 
logistic distribution. These distributions were termed 'neo-normal' by Iriawan [9]. 

Neo-normal distributions represent a class of distributions that either are inherently normal or can 
approximate normality under specific conditions  [1], [9], [11]. For instance, the MSNBurr distribution 
can closely approximate normality when symmetric, the skew-normal distribution converges to the 
standard normal distribution when its skewness parameter is zero (indicating symmetry), and the 
exponential power distribution becomes identical to the normal distribution when its shape parameter 
results in a kurtosis of 3 (the kurtosis of a normal distribution, also known as mesokurtic). 

The MSNBurr-IIa distribution extends the MSNBurr distribution to handle cases with opposite 
skewness characteristics [1]. Derived from the Burr-IIa distribution [12],  the MSNBurr-IIa distribution 
is better suited for accommodating right-skewed data than left-skewed data.  MSNBurr-IIa can estimate 
both symmetrical and skewed data distributions[1]. The parameters represent the shape, location, and 
scale parameters of the MSNBurr-IIa distribution 𝛼, 𝜇, and 𝜎, respectively. The shape parameter is 
related to variations in its skewness. Currently, the specific values of each parameter for the MSNBurr-
IIa distribution are unknown. Consequently, estimation is required to determine these parameter values. 

There are two primary methods for estimating parameters in statistics: the frequentist and Bayesian 
approaches [13]. The Bayesian approach is preferred in this study because it offers more flexible results 
than the frequentist method, particularly in handling complex models and incorporating uncertainty. 
This approach incorporates prior knowledge about the parameters, combining it with observed data to 
produce a probability distribution of the parameters after the data are observed, known as posterior 
distribution. While standard Bayesian calculations can become more complex and time-consuming 
when dealing with a larger number of parameters and data [14], advancements in user-friendly software, 
such as MultiBUGS, driven by scientific and technological progress, have made the Bayesian approach 
readily accessible. 

Bayesian inference using Gibbs Sampling (BUGS) is a project developed to facilitate the 
implementation of Bayesian inference. The advantages of BUGS compared to other Bayesian software 
include ease of use and speed. It also has a model visualization feature called Doodle, which simplifies 
model understanding and analysis [15]. The latest and fourth version of the BUGS program is 
MultiBUGS. MultiBUGS was developed to address computational problems in previous software by 
employing an MCMC parallelization strategy.  MultiBUGS can run on Linux and is fully implemenH 
within other statistical programs, such as R [14], [16].  

Currently, only 29 theoretical distributions are available in MultiBUGS, although the program 
includes many specialized distributions, such as those for temporal, spatial, and reliability modeling. 
However, because MultiBUGS is open-source, users can modify the application as needed. Extensions 
to MultiBUGS can be implemented through the BlackBox Components Builder, an open-source Pascal-
based Integrated Development Environment (IDE). BlackBox provides tools for creating module-based 
documents, assembling and running modules, and developing user interfaces, enabling users to 
customize MultiBUGS according to their specific requirements. 

To address the absence of the MSNBurr-IIa distribution in MultiBUGS, we developed an 
MSNBurr-IIa distribution module. This addition aims to simplify the parameter estimation process for 
the MSNBurr-IIa distribution using the Bayesian approach, making it more accessible and user-friendly. 
The module underwent rigorous testing to ensure its functionality and accuracy. An example application 
involving real-world data with symmetry issues, for which the normal distribution is unsuitable, 
demonstrates the use of the module. 

The addition of the MSNBurr-IIa distribution in MultiBUGS provides significant advantages for 
modeling heavy-tailed data, offering flexibility in handling both symmetric and asymmetric 
distributions. Compared to traditional distributions like the normal or logistic, MSNBurr-IIa allows 
better modeling of extreme values and heteroskedasticity, making it particularly useful for real-world 
data that exhibit high variability. 

Beyond MultiBUGS, this distribution has also been integrated into other Bayesian software. 
Specifically, the R package neodistr extends support for Stan, while the R package neojags adds it to 
JAGS. These implementations enable Bayesian practitioners to leverage MSNBurr-IIa across multiple 
platforms, ensuring robust statistical modeling for diverse data structures. 
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2. Material and Methods 

2.1. Bayesian Method 

The Bayesian method is an inference method derived from Bayes' Theorem, where parameter 
values are unknown and treated as random variables [14],. These random variables are expressed using 
probability distributions: 𝑓(𝜃) represents the prior distribution and 𝑓(𝜃|x) represents the posterior 
distribution. The prior distribution reflects existing knowledge or beliefs about the parameters before 
analyzing the data (x) [8]. The posterior distribution is obtained by updating the prior distribution with 
observed data using Bayes' Theorem. The equation for the posterior distribution is 

𝒇(𝜽|𝐱) =  
𝒇(𝐱|𝜽)𝒇(𝜽)

𝒇(𝐱)
  

               ∝  𝒇(𝐱|𝜽)𝒇(𝜽).                                                                                                                            (1) 

 

2.2. MSNBurr-IIa Distribution  

 The probability density function of the MSNBurr-Ila distribution is given by 

𝑓(𝑥|µ, 𝜎, 𝛼) =  
𝜔

𝜎
𝑒𝑥𝑝 (

𝜔

𝜎
(𝑥 − 𝜇)) (1 +

𝑒𝑥𝑝(
𝜔

𝜎
(𝑥−𝜇)) 

𝛼
)

−(𝛼+1)

                                                              (2) 

where  −∞ < 𝑥 < ∞,  −∞ < 𝜇 < ∞, 𝛼 > 0, 𝜎 > 0, and  

𝜔 =  
(1+ 

1

𝛼
)

(𝛼+1)

√2𝜋
                                                                                                                                              (3) 

which 𝛼 is a shape parameter, 𝜇 is location parameter, 𝜎 and is a scale parameter. If 𝛼 > 1 then data is 
left-skewed, if 𝛼 = 1 then data is symmetric, and if 0 < 𝛼 < 1 then data is right-skewed. The mean, 
variance, mode, skewness, excess kurtosis, and quantile of the MSNBurr-Ila distribution can be 
computed using formulas (4)-(9), respectively. 

𝐸(𝑥) =  𝜇 +  
𝜎

𝜔̃(α)
{𝜓0(1) + ln(α) −  𝜓0(α)}                                                       (4) 

𝑉𝑎𝑟(𝑥) =  
𝜎2

𝜔̃(𝛼)2
{𝜓1(𝛼 ) + 𝜓1(1)}                                                                                                       (5) 

𝑀𝑜𝑑𝑒 = 𝜇                                                                                                                                                    (6) 

𝑆𝑘𝑒𝑤(𝑥) =  
𝜓2(1)− 𝜓2(𝛼)

{𝜓1(α)+𝜓1(1)}
3
2

                                                                                  (7) 

K(𝑥) =  
(𝜓3(𝛼)− 𝜓3(1))

(𝜓1(𝛼)+𝜓1(1))2                                                                                               (8)  

𝑞(𝑢) = 𝜇 +
𝜎

𝜔
(𝑙𝑛(𝛼)  + 𝑙𝑛 ((1 − 𝑢)−

1

𝛼 − 1)  )                                                                                   (9) 

where 0 < 𝑢 < 1, ω follows equation (3), and 𝜓0(. ) is 𝜓1(. ), 𝜓2(. ), 𝜓3(. ) are digamma, trigamma, 

tetragamma, and pentagamma functions, respectively [1]. 

 

2.3.  Deviance Information Criterion (DIC) 

The Deviance Information Criterion (DIC), a widely used Bayesian model selection criterion, 
assesses model validity and goodness of fit. It balances model complexity and goodness of fit to the 
observed data. In the BUGS program, DIC is automatically calculated and can be used to compare 
different models. The model with the smallest DIC value is preferred, as it indicates the best fit to the 
data. DIC is calculated as    

𝐷𝐼𝐶 =  𝐷̅ + 𝑃𝐷                                                                                                                                                (10) 

where 𝑫̅ is the posterior mean of the deviance and 𝑷𝑫 is the adequate number of parameters. 

(See [17]  for further details). 
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2.4.  MSNBurr-IIa Distribution Module Development 

The research began by analyzing the requirements for a functional MSNBurr-IIa distribution 
module within MultiBUGS. This analysis informed the module's design, which was then implemented 
using Pascal and the "Univariatetemp1.odc" template file.  The following adjustments were made to the 
template to accommodate the MSNBurr-IIa distribution: (1) Module initiation adjustments, (2) 
Parameter adjustments in all procedures, (3) Equation changes in several procedures, including 
ClassifyPrior, DevianceUnivariate, DiffLogLikelihood, DiffLogPrior, LogLikelihood-Univariate, 
LogPrior, Cumulative, and Sample, (4) Addition of procedures for generating random values from the 
MSNBurr-IIa distribution in “Randnum.odc” file, (5) Updating "The 'Cumulative.odc' file with a new 
procedure to compute the cumulative distribution function of the MSNBurr-IIa distribution, (6) 
Updating The 'External.odc', 'Make.odc', and 'Linking.odc' files to incorporate 'GraphMSNBurr2a', 
allowing the MSNBurr-IIa distribution module to be accessed and utilized, and (7) Modification of the 
'Strings.odc' file to include the parameters and default values for the MSNBurr-IIa distribution, enabling 
its graphical representation within the software. 

The next step involved rigorous testing and validation of the developed module to ensure its 
functionality and accuracy for practical use. This testing process consisted of two main steps: First, the 
MSNBurr-IIa distribution module was tested to ensure proper compilation and the absence of coding 
errors. This was achieved by running the module through Doodle, MultiBUGS's graphical interface for 
model visualization. The absence of error messages indicated a successful compilation. Second, the 
probability values generated by the module were validated by comparing them with equivalent 
calculations performed in the R programming language, using identical input parameters. This aimed to 
ensure the accuracy of the probability calculations within MultiBUGS. The validation used the absolute 
difference in cumulative distribution function (CDF) and probability density function (PDF) values, 
following the approach used by Annis et al.  [18] for adding distributions to the Stan program. More 
minor absolute differences indicate higher accuracy in the MultiBUGS. 

After confirming the module's functionality and accuracy, the next step focused on its 
implementation for simulated and real-world data. Simulation data was used to assess the performance 
of the MSNBurr-IIa distribution in accurately modeling data with various characteristics, including 
right-skewed, symmetrical, and left-skewed data. Normal distribution simulations served as a 
benchmark for comparison. Simulation data is generated from the distribution of MSNBurr-IIa for three 
scenarios with varying degrees of skewness. Scenario 1 for right-skewed data is MSNBurr-IIa(0,1,0.1), 
Scenario 2 for symmetrical data is MSNBurr-IIa (0,1,1), and Scenario 3 for left-skewed data is 
MSNBurr-IIa(0,1,3). Additionally, Scenario 4 is normal(0,1). Each scenario comprised 1,000 
simulated samples.  

For real-world application, the module analyzed the economic growth rate of districts/cities in 
Indonesia in 2021.  This data was used because it has a non-normal distribution, thus demonstrating the 
advantages of the MSNBurr-IIa distribution. This application involved several steps: First, the economic 
growth rate data was examined using the Shapiro-Wilk test for normality and the skewness coefficient 
to understand its characteristics and determine the degree of skewness. Second, the parameters of the 
MSNBurr-IIa distribution were estimated using the developed module in MultiBUGS. Convergence of 
the estimation process was assessed through trace plots, which visually display the sampled values of 
the parameters over time. Finally, the model was validated by comparing the characteristics of the fitted 
MSNBurr-IIa distribution (e.g., mean, variance, and skewness) with the observed characteristics of the 
economic growth rate data. This comparison, which included visual assessments of histograms, 
evaluated the model's goodness of fit and ability to represent the real-world data accurately. 

3. Results and Discussion 

3.1.  Requirements 

The necessary conditions in MultiBUGS can be identified by examining the functions and 

conditions in existing distribution modules, such as the normal and logistics distribution modules, 

which served as references for developing the MSNBurr-IIa distribution module. To create a new 

module in MultiBUGS, the following are required: 
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1. The MultiBUGS source code, including a template for new distribution modules and necessary 
modules (see Figure 3) 

2. BlackBox component builder v1.7 from Oberon Microsystems (http://www.oberon.ch). 

3. Mathematical formulas, including formulas for the log-likelihood, its derivatives, random variate 
generation, and the cumulative distribution function. 

3.2.  Module Design 

The MSNBurr-IIa module in MultiBUGS is developed using the 'univariatetemp.odc' file 

template. To adhere to the MultiBUGS architecture, modifications are made not only to the 

'Univariatetemp.odc' file but also involve adding or modifying code in several other files, including 

'Randnum.odc', 'Cumulative.odc', 'External.odc', 'Make.odc', 'Linking.odc', 'Strings.odc'.  The files 

modified within the architecture are highlighted in the diagram in Figure 1. Green indicates folders, 

while purple highlights indicate the files requiring modification.  

For consistency, we change the parameter 𝜎 to 𝜏, where 𝜏 =
1

𝜎
.   This change affects the 

probability density function (pdf). The pdf of the MSNBurr-IIa distribution after parameter changes is 

as follows. 

𝑓(𝑥|𝜔, 𝜇, 𝜏, 𝛼) =  𝜔𝜏 exp(𝜔𝜏(𝑥 − 𝜇)) (1 +
exp(𝜔𝜏(𝑥−𝜇))

𝛼
)

−(𝛼+1)

                                                    (11)  

where  𝜔 follow equation (3). Changes in the PDF will cause changes to the other equations used, 

namely, as follows. 

1. The natural logarithm of the probability density function 

ln(𝑓(𝑥)) =   ln(𝜔) + log(𝜏) + 𝜔𝜏(𝑥 − 𝜇) − (1 − 𝛼) log (1 +
exp(𝜔𝜏(𝑥−𝜇))

𝛼
)                              (12)  

2. The natural logarithm of the unnormalized probability density function  

ln(𝑝(𝑥)) =  𝜔𝜏(𝑥 − 𝜇) − (1 − 𝛼) log (1 +
exp(𝜔𝜏(𝑥−𝜇))

𝛼
)                               (13) 

3. The natural logarithmic derivative of the probability density function for variable X 
𝑑

𝑑𝑥
log(𝑓(𝑥)) =   −

𝛼𝜔𝜏(exp(𝜔𝜏(𝑥−𝜇))−1)

exp(𝜔𝜏(𝑥−𝜇))+𝛼
                                                                                               (14) 

4. Partial derivative of parameter 𝛼 

 
𝜕

𝜕𝛼
log(𝑓(𝑥)) = −

exp(𝜔𝜏(𝑥−𝜇))(−1−𝛼)

(
exp(𝜔𝜏(𝑥−𝜇))

𝛼2 +1)𝛼2
  − log (

exp(𝜔𝜏(𝑥−𝜇))

𝛼
+ 1)                                                    (15) 

5. Partial derivative of parameter μ 
𝜕

𝜕𝜇
log(𝑓(𝑥)) =  

𝛼𝜔𝜏(exp(𝜔𝜏(𝑥−𝜇))−1)

exp(𝜔𝜏(𝑥−𝜇))+𝛼
                                                                                               (16) 

6. Partial derivative of parameter  
𝜕

𝜕𝜏
log(𝑓(𝑥)) =

𝜔(−1−𝛼)(𝑥−𝜇) exp(𝜔𝜏(𝑥−𝜇))

𝛼(
exp(𝜔𝜏(𝑥−𝜇))

𝛼
+1)

+
1

𝜏
+ 𝜔(𝑥 − 𝜇)                                                           (17) 

7. Quantile 

 𝑥  =  𝜇 +
1

𝜔𝜏
(log(𝛼) + log ((1 − 𝑢)−

1

𝛼 − 1))                                                                                                    (18) 

8. Cumulative distribution function 

 𝐹(𝑥) = 1 − (1 −
exp(𝜔𝜏(𝑥−𝜇))

𝛼
)

−

                                                                                                      (19) 

Making doodles the MSNBurr-IIa distribution in MultiBUGS requires a list of parameters used 

in the MSNBurr-IIa distribution: location parameter, rate parameters, shape parameters, and the default 

values of each parameter.  along with the default values of each. The default values used are 0 for the 

location parameter, 1.0 × 10−3 for the rate parameter and 0.1 for the shape parameter. The diagram 

illustrating the relationships between modules in creating the MSNBurr-IIa distribution module is 

visualized in Figure 1. 

http://www.oberon.ch/
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Figure 1. Diagram of the relationship between modules in the creation of the MSNBurr-IIa distribution 

module 
 

3.3. Module Development 

During the module creation stage, the module code will be written according to the design and 

equations prepared during the module design stage. The module is created using the 

"Univaritetemp1.odc" template in the MultiBUGS-master file. The code template is written in Pascal 

and displayed in black, red, and green colors. Lines of code in green and enclosed by (* ... *) are not 

executed by the program, as they are comments. Lines of code in black should not be changed except 

for definitions added. Lines of code in red can be modified according to the user's needs. 

The MSNBurr-IIa distribution module-file will be written in a new file named 

"MSNBurr2a.odc". An example of the beginning code in the file "MSNBurr2a.odc" can be seen in 

Figure 2. This file is saved in the “Graph\mod” folder 

The MSNBurr-IIa distribution module is initiated at the beginning of the file, first by naming 

the module "GraphMSNBurr2a". This name is chosen because the module will be stored in the Graph 

folder for the MSNBurr-IIa distribution. After naming the module, the folders used in the MSNBurr-

IIa distribution module are specified: the Math folder, which stores mathematical function modules, 

and the Stores folder for storage in the IMPORT function. The TYPE function declares the data types 

of the nodes and parameters that will be used. Next, the Factory function is an abstract class to create 

nodes in the graphical model. A constant is also declared, specifically 𝜀 (eps), with a value of 

1.0 × 10−10 .  Finally, variables are declared, namely fact, version, and maintainer. 

 

 
Figure 2. Code of the beginning part of the file “MSNBurr2a.odc” 

 

MODULEGraphMSNBurr2a;

IMPORT

Math, Stores := Stores64,

GraphNodes,GraphRules, GraphStochastic, GraphUnivariate,

MathCumulative, MathFunc, MathRandnum;

TYPE

Node = POINTERTO RECORD(GraphUnivariate.Node)

mu, tau, alpha: GraphNodes.Node

END;

Factory = POINTERTO RECORD(GraphUnivariate.Factory)END;

CONST

eps = 1.0E-10;

VAR

fact-: GraphUnivariate.Factory;

version-: INTEGER;

maintainer-: ARRAY 40 OF CHAR;
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The BoundsUnivariate procedure establishes that the distribution is a continuous univariate 

distribution, with a domain of   (−∞, ∞). The CheckUnivariate procedure verifies if the distribution is 

univariate and checks compliance with the MSNBurr-IIa distribution. These requirements dictate that 

the parameters 𝜏 and 𝛼 must be positive. If 𝜏 < -𝜖 and 𝛼 < -𝜖, an error will be triggered, indicating that 

the second and third arguments contain non-positive parameters (which is invalid for this distribution). 

The code implementing the BoundsUnivariate and CheckUnivariate procedures within the 

"MSNBurr2a.odc" file is shown in Figure 3. 

 
Figure 3. Code of boundsunivariate and checkunivariate procedure in “MSNBurr2a.odc” 

The ClassifyLikelihoodUnivariate procedure classifies the likelihood of a distribution by 

examining the parent nodes of each parameter (𝛼, 𝜇, and 𝜏).  Other parts of the MultiBUGS system 

likely use this classification to determine how to handle the distribution during calculations and 

statistical inference. The parent nodes of parameters are categorized by the ClassFunction, which is 

found in the "Stochastic.odc" file (Figure 4). 

 
Figure 4. Code of classifylikelihoodunivariate procedure in “MSNBurr2a.odc” 

The ClassifyPrior procedure, as shown in Figure 5, returns a value indicating that the prior for 

the MSNBurr-IIa distribution is logCon (log-concave). This suggests that the parameters of this 

distribution are assumed to have priors belonging to the log-concave distribution family. The Cumulative 

procedure calculates the cumulative probability for the MSNBurr-IIa distribution, using Equation (19) 

for the cumulative distribution function. 

 

 

PROCEDURE(node: Node)CheckUnivariate(): SET;

BEGIN

IF node.tau.value < - eps THEN

RETURN{GraphNodes.posative,GraphNodes.arg2}

END;

IF node.alpha.value < -eps THEN

RETURN{GraphNodes.posative,GraphNodes.arg3}

END;

RETURN{}

END CheckUnivariate;

PROCEDURE(node: Node)ClassifyLikelihoodUnivariate(parent: GraphStochastic.Node): INTEGER;

VAR

density, density0, density1, f0, f1: INTEGER;

BEGIN

f0 := GraphStochastic.ClassFunction(node.mu, parent);

f1 := GraphStochastic.ClassFunction(node.tau, parent);

CASE f0 OF

|GraphRules.const:

density0 := GraphRules.unif

|GraphRules.ident, GraphRules.prod,GraphRules.linear:

density0 := GraphRules.logCon

|GraphRules.other:

density0 := GraphRules.general

ELSE

density0 := GraphRules.genDiff

END;

density1 := GraphRules.ClassifyShape(f1);

IF density0 = GraphRules.unif THEN

density := density1

ELSIF density1 = GraphRules.unif THEN

density := density0

ELSIF (density0 # GraphRules.general)& (density1 # GraphRules.general)THEN

density := GraphRules.genDiff

ELSE

density := GraphRules.general

END;

RETURNdensity

ENDClassifyLikelihoodUnivariate;
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Figure 5. The code of classifyprior dan cumulative procedure in “MSNBurr2a.odc” 

The DevianceUnivariate procedure (Figure 6) defines the distribution's deviance, which is 

calculated as negative two times the logarithm of the probability density function, as described in 

Equation (12). This procedure is also commonly used in calculating the Deviance Information Criterion 

(DIC).  

 

 
Figure 6. The code of devianceunivariate procedure in“MSNBurr2a.odc” 

The DiffLogLikelihood procedure calculates the derivative of the log-likelihood function 

concerning each parameter. These derivatives are defined in Equations (15), (16), and (17). The 

DiffLogPrior procedure calculates the derivative of the log probability density function for the 

MSNBurr-IIa distribution, based on the random variable X. In the context of the MSNBurr-IIa 

distribution, this derivative refers to the log of the probability density function (log-pdf) concerning the 

variable X, as defined in Equation (14). The DiffLogLikelihood and DiffLogPrior procedures are shown 

in Figures 7 and 8, respectively. 

 

 

 

 

 

PROCEDURE(node: Node)ClassifyPrior (): INTEGER;

VAR

class : INTEGER;

BEGIN

class := GraphRules.logCon;

RETURNclass

END ClassifyPrior;

PROCEDURE(node: Node)Cumulative (x: REAL): REAL;

VAR

cumulative, mu, tau, alpha, omega: REAL;

BEGIN

mu := node.mu.value;

tau := node.tau.value;

alpha := node.alpha.value;

omega := Math.Power(1 + (1/alpha), (1 + alpha)) / Math.Sqrt(2.0 * Math.Pi());

cumulative := 1 - Math.Power((1 + (Math.Exp(omega * (x-mu) * tau))/ alpha), -alpha);

RETURNcumulative;

END Cumulative;

PROCEDURE(node: Node)DevianceUnivariate(): REAL;

VAR

logDensity, logTau, logOmega, logExp, mu, tau, alpha, x, omega: REAL;

BEGIN

x := node.value;

mu := node.mu.value;

tau := node.tau.value;

alpha := node.alpha.value;

omega := Math.Power(1 + (1/alpha), (1 + alpha)) / Math.Sqrt(2.0 * Math.Pi());

logTau := MathFunc.Ln(tau);

logOmega := MathFunc.Ln(omega);

logDensity := logOmega + logTau + (omega*(x-mu)*tau)- (1 + alpha) * Math.Ln(1.0+

(Math.Exp(omega*(x-mu)*tau)) / alpha);

RETURN-2.0 * logDensity;

END DevianceUnivariate;
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Figure 7. The code of the diffloglikelihood procedure in “MSNBurr2a.odc” 

 
Figure 8. The code of the difflogprior procedure in “MSNBurr2a.odc” 

The ExternalizeUnivariate procedure, shown in Figure 9, functions to externalize or write the 

nodes of each parameter—namely 𝛼, 𝜇, and 𝜏,—to be stored in Stores. Meanwhile, the 

InternalizeUnivariate procedure is used to internalize or read the nodes of each stored parameter. The 

InitUnivariate procedure initializes the nodes for the univariate distribution, with the initial value of 

each node being NIL. 

PROCEDURE(node: Node)DiffLogLikelihood(x: GraphStochastic.Node):REAL;

VAR

mu, tau, alpha, val, omega, differential,diffTau,diffMu, exp, diffAlpha: REAL;

BEGIN

val := node.value;

mu := node.mu.value;

tau := node.tau.value;

alpha := node.alpha.value;

omega := Math.Power(1 + (1/alpha), (1 + alpha)) / Math.Sqrt(2.0 * Math.Pi());

exp := Math.Exp(omega*(val-mu)*tau);

IF (GraphStochastic.hint1 IN x.props) OR (GraphNodes.dataIN node.tau.props) OR (GraphNodes.data

IN node.alpha.props) THEN

diffMu := node.mu.Diff(x);

differential := diffMu* ((alpha * omega * tau * exp - 1) / (exp + alpha));

ELSIF (GraphStochastic.hint1 IN x.props) OR (GraphNodes.dataIN node.mu.props) OR

(GraphNodes.dataIN node.alpha.props) THEN

diffTau:= node.tau.Diff(x);

differential := diffTau* (((-alpha-1)* omega * (val- mu) * exp) / (alpha * (exp / alpha + 1)) + (1/tau) +

omega * (val- mu));

ELSIF (GraphStochastic.hint1 IN x.props) OR (GraphNodes.dataIN node.mu.props) OR

(GraphNodes.dataIN node.tau.props) THEN

diffAlpha := node.alpha.Diff(x);

differential := diffAlpha * (- (exp * (-1-alpha))/ ((exp / alpha + 1) * alpha * alpha) - Math.Ln(exp /

alpha + 1));

ELSE

diffMu := node.mu.Diff(x);

diffTau:= node.tau.Diff(x);

diffAlpha := node.alpha.Diff(x);

differential := (dif fMu* ((alpha * omega * tau * exp - 1) / (exp + alpha)) + (dif fTau* (((-alpha-1)*

omega * (val- mu) * exp) / (alpha * (exp / alpha + 1)) + (1/tau) + omega * (val- mu))) + (dif fAlpha * (- (exp *

(-1-alpha))/ ((exp / alpha + 1) * alpha * alpha) - Math.Ln(exp / alpha + 1))));

END;

RETURNdifferential;

END DiffLogLikelihood;

PROCEDURE(node: Node)DiffLogPrior(): REAL;

VAR

differential,exp, mu, tau, alpha, omega, x: REAL;

BEGIN

x := node.value;

mu := node.mu.value;

tau := node.tau.value;

alpha := node.alpha.value;

omega := Math.Power(1 + (1/alpha), (1 + alpha)) / Math.Sqrt(2.0 * Math.Pi());

exp := Math.Exp(omega * (x - mu) * tau);

differential := (- (alpha * omega * tau *(exp - 1)) / (exp + alpha));

RETURNdifferential;

END DiffLogPrior;
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Figure 9. The code of externalizeunivariate, initunivariate, and internalizeunivariate procedures in 

“MSNBurr2a.odc” 

 

The Install procedure in Figure 10 sets up the MSNBurr-IIa distribution, ensuring that the 

"MSNBurr2a.odc" file is automatically integrated when the "External.odc" file is compiled. The 

Location* procedure retrieves the value of the location parameter, which is 𝜇 in the MSNBurr-IIa 

distribution. 

 

 
Figure 10. The code of install and location procedure in “MSNBurr2a.odc” 

The LogLikelihoodUnivariate procedure in Figure 11 is used to compute the log-likelihood 

function of the probability density function, as specified in equation (33). This procedure ensures that 

the log-likelihood is correctly defined for univariate distributions, essential for accurate Bayesian 

computation. 

 

 
Figure 11. The code of loglikelihoodunivariate procedure in “MSNBurr2a.odc” 

The LogPrior procedure, as in Figure 12, defines the equation for the log-likelihood function of 

the probability density function, which is dependent on the variable 𝑋, as specified in equation (31). 

This procedure is crucial for incorporating prior distributions into the model, allowing for a 

PROCEDURE(node: Node)ExternalizeUnivariate (VAR wr: Stores.Writer);

BEGIN

GraphNodes.Externalize(node.mu, wr);

GraphNodes.Externalize(node.tau,wr);

GraphNodes.Externalize(node.alpha,wr);

END ExternalizeUnivariate;

PROCEDURE(node: Node) InitUnivariate;

BEGIN

node.mu := NIL;

node.tau := NIL;

node.alpha := NIL;

END InitUnivariate;

PROCEDURE(node: Node) InternalizeUnivariate(VAR rd: Stores.Reader);

BEGIN

node.mu := GraphNodes.Internalize(rd);

node.tau := GraphNodes.Internalize(rd);

node.alpha := GraphNodes.Internalize(rd);

END InternalizeUnivariate;

PROCEDURE(node: Node) Install (OUTinstall: ARRAY OF CHAR);

BEGIN

install := "GraphMSNBurr2a.Install"

END Install;

PROCEDURE(node: Node)Location (): REAL;

VAR

mu: REAL;

BEGIN

mu := node.mu.value;

RETURNmu;

END Location;

PROCEDURE(node: Node)LogLikelihoodUnivariate(): REAL;

VAR

logDensity, logTau, logOmega,mu, tau, alpha, x, omega: REAL;

BEGIN

x := node.value;

mu := node.mu.value;

tau := node.tau.value;

alpha := node.alpha.value;

omega := Math.Power(1 + (1/alpha), (1 + alpha)) / Math.Sqrt(2.0 * Math.Pi());

logTau := MathFunc.Ln(tau);

logOmega := MathFunc.Ln(omega);

logDensity := logOmega + logTau + omega*(x-mu)*tau - (1 + alpha) * Math.Ln(1.0+

(Math.Exp(omega*(x-mu)*tau) / alpha));

RETURNlogDensity;

END LogLikelihoodUnivariate;
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comprehensive Bayesian analysis by accounting for the influence of prior knowledge on the current 

data. 

 

 
Figure 12. Source code prosedur logprior in “MSNBurr2a.odc” 

The ParentsUnivariate procedure (Figure 13) adds the parents of each parameter node to a list. 

The SetUnivariate procedure is used to insert the nodes of each parameter into an array. 

 

 
Figure 13. The code of parentsunivariate and setunivariate procedure in “MSNBurr2a.odc” 

The Sample procedure shown in Figure 14 defines the sampling method to be used in the 

estimation process. If the distribution has no constraints or domain, sampling will use the MSNBurr2a 

function from the "Randnum.odc" file in the “Math\mod” folder. If the distribution has constraints or a 

domain, sampling will use the MSNBurr2aLB, MSNBurr2aRb, or MSNBurr2aIB functions. 

PROCEDURE(node: Node)LogPrior (): REAL;

VAR

x, mu, tau, alpha, omega, logPrior: REAL;

BEGIN

x := node.value;

mu := node.mu.value;

tau := node.tau.value;

alpha := node.alpha.value;

omega := Math.Power(1 + (1/alpha), (1 + alpha)) / Math.Sqrt(2.0 * Math.Pi());

logPrior := omega*(x-mu)*tau - (1 + alpha) * Math.Ln(1.0 + (Math.Exp(omega*(x-mu)*tau)/alpha));

RETURNlogPrior;

END LogPrior;

PROCEDURE(node: Node)ParentsUnivariate(all: BOOLEAN): GraphNodes.List;

VAR

list: GraphNodes.List;

BEGIN

list := NIL;

node.mu.AddParent(list);

node.tau.AddParent(list);

node.alpha.AddParent(list);

RETURNlist;

END ParentsUnivariate;

PROCEDURE(node: Node)SetUnivariate(IN args: GraphNodes.Args;OUT res: SET);

BEGIN

res := {};

WITHargs: GraphStochastic.Args DO

ASSERT(args.scalars[0]# NIL, 21);

node.mu := args.scalars[0];

ASSERT(args.scalars[1]# NIL, 21);

node.tau := args.scalars[1];

ASSERT(args.scalars[2]# NIL, 21);

node.alpha := args.scalars[2];

END;

END SetUnivariate;
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Figure 14. The code of the sample procedure in “MSNBurr2a.odc” 

The New procedure (Figure 15) is responsible for creating and initializing a new instance of a 

Node object, which represents a key element in the probabilistic graphical model used by MultiBUGS. 

It allocates memory for the Node, calls its Init method to configure default properties, and returns the 

fully initialized object. This process is essential for defining new distributions, as each corresponds to a 

unique node in the model's computational graph. The Signature procedure, on the other hand, assigns a 

specific identifier ("sssCT") to the distribution or object, where "sss" indicates that the MSNBurr-IIa 

distribution has three parameters. 

 
Figure 15. The code of the new and signature procedure in “MSNBurr2a.odc” 

The code in Figure 16 defines procedures for initializing and managing a module named 

GraphMSNBurr2a. The Init procedure creates a new instance of Factory, sets it to fact, and calls the 

Maintainer procedure to assign a version number and maintainer name. The Install procedure sets the 

fact object as the factory for GraphNodes, and the entire module begins by calling Init to initialize its 

components. 

PROCEDURE(node: Node)Sample (OUTres: SET);

VAR

mu, tau, omega, alpha, x, lower, upper: REAL;

bounds: SET;

BEGIN

mu := node.mu.value;

tau := node.tau.value;

alpha := node.alpha.value;

bounds := node.props * {GraphStochastic.leftImposed, GraphStochastic.rightImposed};

IF bounds = {} THEN

x := MathRandnum.MSNBurr2a(mu, tau, alpha);

ELSE

node.Bounds(lower,upper);

IF bounds = {GraphStochastic.leftImposed} THEN

x := MathRandnum.MSNBurr2aLB(mu, tau, alpha, lower);

ELSIF bounds = {GraphStochastic.rightImposed}THEN

x := MathRandnum.MSNBurr2aRB(mu, tau, alpha, upper);

ELSE

x := MathRandnum.MSNBurr2aIB(mu, tau, alpha, lower, upper);

END;

END;

node.value := x;

res := {};

END Sample;

PROCEDURE(f: Factory) New (): GraphUnivariate.Node;

VAR

node: Node;

BEGIN

NEW(node);

node.Init;

RETURNnode;

END New;

PROCEDURE(f: Factory) Signature (OUTsignature: ARRAY OF CHAR);

BEGIN

signature := "sssCT";

END Signature;
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Figure 16. The code of procedure install and signature in “MSNBurr2a.odc” 

In addition to creating the MSNBurr-IIa distribution module file, it is necessary to add and 

modify code in several other files to support the MSNBurr-IIa distribution module. Code additions to 

the "Randnum.odc" file (Figure 17) involve implementing four procedures for generating values 

distributed according to the MSNBurr-IIa distribution, which will then be used for sampling during 

estimation. The algorithm used in value generation employs the inverse transform method with the 

following steps: 

1. Generate 𝑢 from a Uniform(0,1) distribution. 

2. Let 𝑣 = 𝐹(𝑎) + [𝐹(𝑏) − 𝐹(𝑎)]𝑢 

3. The generated value is 𝑥 = 𝐹−1(𝑣) ,                                                     

where 𝐹(𝑥) is cumulative distribution function in equation (19) , 𝐹(𝑎) is the cumulative probability of 

the function when x equals the lower bound of the distribution, 𝐹(𝑏) is the cumulative probability when 

𝑥 equals the upper bound, and  𝑥 = 𝐹−1(𝑣) represents the inverse function as defined in equation (18). 

 

 
Figure 17. The code of generate MSNBurr2a distribution in “Randnum.odc” 

When a distribution is known to have a lower bound, an upper bound, or both, it will have a 

specific generating function for these conditions. The conditional distribution resulting from restricting 

the domain of certain other probability distributions is called a truncated distribution. The function for 

the truncated distribution is as follows: 

 𝑓∗(𝑥) = {
𝑓(𝑥)

𝐹(𝑏)−𝐹(𝑎)
, 𝑎 ≤ 𝑥 ≤ 𝑏

0, 𝑜𝑡ℎ𝑒𝑟𝑠
                                                                                                                                                          (20) 

To calculate 𝐹(𝑎) and 𝐹(𝑏), we need to compute the value of the CDF of MSNBurr-IIa. The 

code for calculating it is written in the file Cumulative.odc in the “Math\Mod” folder, as shown in Figure 

18. 

 

PROCEDUREInstall*;

BEGIN

GraphNodes.SetFactory(fact);

END Install;

PROCEDUREMaintainer;

BEGIN

version:= 500;

maintainer := "Eliana P. Ramadani";

END Maintainer;

PROCEDUREInit;

VAR

f: Factory;

BEGIN

Maintainer;

NEW(f);

fact := f

END Init;

BEGIN

Init

END GraphMSNBurr2a.

PROCEDUREMSNBurr2a* (mu, tau, alpha: REAL): REAL;

VAR

u, omega: REAL;

BEGIN

u := generator.Rand();

omega := Math.Power((1 + 1/alpha), (1+alpha)) / Math.Sqrt(2 * Math.Pi());

RETURNmu + (1 /(omega*tau)) * (Math.Ln(alpha) + Math.Ln(Math.Power( 1 - u, (-1/alpha)) - 1));

END MSNBurr2a;
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 Figure 18. The code of CDF MSNBurr2a distribution in “Cumulative.odc” 

Therefore, the additions to the "Randnum.odc" file for truncated distributions are as follows: for 

truncation on the left side, truncation on the right side, and truncation on both sides (Figure 19-21). 

 

1. The distribution is truncated on the left side 

 
Figure 19. The code of MSNBurr2aLB procedure in “Randnum.odc” 
 

2. The distribution is truncated on the right side  

 
Figure 20. The code of MSNBurr2aRB procedure in “Randnum.odc” 

 

3. The distribution is truncated on both sides, the left and right 

 
Figure 21. The code of MSNBurr2aIB procedure in “Randnum.odc” 

 

Code additions to the "External.odc" file (Figure 22), located in the "Bugs\Mod" folder, are 

made to integrate the MSNBurr-IIa module so it can be accessed alongside other distributions. These 

additions are made within the LOAD procedure. The first addition includes the MSNBurr-IIa univariate 

distribution from the previously created module file. The second addition loads the function for the 

MSNBurr-IIa cumulative distribution function (CDF). The third addition loads the function for the 

MSNBurr-IIa probability density function (PDF). Finally, additional code is added to load the available 

deviance function. 

 

 
Figure 22. Adding MSNBurr-Iia code in “External.odc” 

The code additions to "Linking.odc", as shown in Figure 23, are intended to ensure that the 

MSNBurr-IIa distribution module can be executed as part of a dynamic-link library. The compilation 

process depends on the operating system used, either Linux or Windows. In addition to modifying 

PROCEDUREMSNBurr* (mu, tau, alpha, x: REAL): REAL;

VAR

omega: REAL;

BEGIN

omega := Math.Power(1 + (1/alpha), (1 + alpha)) / Math.Sqrt(2.0 * Math.Pi());

RETURN Math.Power(1+ (Math.Exp(-omega*(x-mu)*tau)/alpha),alpha);

END MSNBurr;

PROCEDURE MSNBurr2aLB* (mu, tau, alpha, lower: REAL): REAL;

VAR

u, pLower, omega: REAL;

BEGIN

pLower := MathCumulative.MSNBurr2a(alpha, mu, tau, lower);

u := pLower + (1 - pLower) * generator.Rand();

omega := Math.Power((1 + 1/alpha), (1+alpha)) / Math.Sqrt(2 * Math.Pi());

RETURN mu + (1/(omega*tau)) * (Math.Ln(alpha) + Math.Ln(Math.Power( 1 - u, (-1/alpha)) - 1));

END MSNBurr2aLB;

PROCEDURE MSNBurr2aRB* (mu, tau, alpha, upper: REAL): REAL;

VAR

u, pUpper, omega: REAL;

BEGIN

pUpper:= MathCumulative.MSNBurr2a(alpha, mu, tau, upper);

u := pUpper * generator.Rand();

omega := Math.Power((1 + 1/alpha), (1+alpha)) / Math.Sqrt(2 * Math.Pi());

RETURNmu + (1 / (omega*tau)) * (Math.Ln(alpha) + Math.Ln(Math.Power( 1 - u, (-1/alpha)) - 1));

END MSNBurr2aRB;

PROCEDUREMSNBurr2aIB*(mu, tau, alpha, lower, upper: REAL): REAL;

VAR

u, pLower, pUpper, omega: REAL;

BEGIN

pLower := MathCumulative.MSNBurr2a(alpha,mu, tau, lower);

pUpper := MathCumulative.MSNBurr2a(alpha,mu, tau, upper);

u := pLower + (pUpper - pLower) * generator.Rand();

omega := Math.Power((1+ 1/alpha), (1+alpha)) / Math.Sqrt(2 * Math.Pi());

RETURNmu + (1/(omega*tau))* (Math.Ln(alpha) + Math.Ln(Math.Power( 1 - u, (-1/alpha)) - 1));

END MSNBurr2aIB;

Density("dmsnburr2a", "GraphMSNBurr2a.Install");

Function("pdf.msnburr2a", "GraphDensity.DensityUVInstall(dmsnburr2a)");

Function("cdf.msnburr2a", "GraphDensity.CumulativeInstall(dmsnburr2a)");

Function("dev.msnburr2a","GraphDensity.DevianceUVInstall(dmsnburr2a)");
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"Linking.odc", code is also added to "Make.odc" (Figure 24) to ensure that the MSNBurr-IIa module 

can be compiled and linked correctly along with other programs. The modifications to both files involve 

including "GraphMSNBurr2a" (the name of the module) in the same section as the other distribution 

files. Both files are in “Developer” folder. 

 

 
Figure 23. Adding graphMSnburr2a in “Linking.odc” 

 
Figure 24. Adding graphMSnburr2a in “Make.odc” 

Code additions to the "Strings.odc" file, shown in Figure 25, are made to include a doodle for 

the MSNBurr-IIa distribution, facilitating easier visual modeling within MultiBUGS. This addition 

involves listing the parameters used in the MSNBurr-IIa module, as defined during the module design 

phase. Each parameter is associated with index 17, which corresponds to the assigned sequence number 

of the MSNBurr-IIa distribution within the system. 

 

 
Figure 25. Adding code for MSNburr-Iia module in “Strings.odc” 

To integrate the MSNBurr-IIa distribution module, MultiBUGS needs to be recompiled. This is 

done by opening the "Make.odc" file and clicking the exclamation mark icon (typically used to initiate 

the build process). The MSNBurr-IIa distribution module will then be compiled along with other 

MultiBUGS components, successfully integrating it into the system. The complete procedure for 

compiling MultiBUGS source code is documented at: https://github.com/MultiBUGS/MultiBUGS. 

After the module has been created and the necessary changes have been made to other related files, 
MultiBUGS should be recompiled using the "Make.odc" file. Once this is done, the MSNBurr-IIa 
distribution module will be successfully integrated into MultiBUGS and can be accessed at: 
https://github.com/elianaputrir/MultiBUGS-MSNBurr2a. 

3.4.  Module testing 

The module testing phase consisted of five steps: testing of doodle, validation of probability 

values, validation of the simulation data density plot, validation of simulation data parameter estimation 

results, and comparison of DIC values. This testing ensured that the program ran correctly and produced 

the expected results without any detected errors. 

Testing of doodle was conducted by running the MSNBurr-IIa distribution with the following 

prior distributions for each parameter: normal(0;  1.0 × 10−6) for parameter 𝜇, gamma (1000; 1000) 

for parameter 𝜏, and uniform(0; 10) for parameters 𝛼. Figure 26 visualizes the MSNBurr-IIa distribution 

model. Based on this figure, the added MSNBurr-IIa distribution module functioned correctly and ran 

without any errors or warnings detected by MultiBUGS. 

GraphRulesGraphNodesGraphGrammarGraphLogicalGraphStochasticGraphLimits

GraphScalarGraphLinkfuncGraphVectorGraphParamtransGraphWeight

GraphUnivariateGraphConjugateUVGraphVDGraphCensoringTruncation

GraphMultivariateGraphConjugateMVGraphChainGraphGMRFGraphFunctional

GraphBlockGraphMessagesGraphResourcesGraphMSNBurr2a

GraphBernGraphBinomialGraphCatGraphFounderGraphGeometric

GraphHypergeometricGraphMendelianGraphNegbinGraphPoissonGraphRecessive

GraphZipfGraphMSNBurr2a

densities[17] dmsnburr2a

param0[17] location

param1[17] rate

param2[17] shape

default0[17] 0

default1[17] 1.0E-3

default2[17] 1

https://github.com/elianaputrir/MultiBUGS-MSNBurr2a
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Figure 26. Visualization of trial model with doodle 

Validation of the probability values was performed by comparing the probability density 

function (PDF) and cumulative distribution function (CDF) calculations of the MSNBurr-IIa 

distribution obtained from MultiBUGS [14] and neodistr package [19] in R that was published in 

CRAN. Ten sample points (𝑥) were generated from the MSNBurr-IIa distribution in MultiBUGS using 

the parameters 𝜇 = 0, 𝜎 = 1, and 𝛼 = 0.1.  The PDF and CDF values were then calculated for these 

sample points using both MultiBUGS and the corresponding functions in the neodistr package (Table 

1). 

 

Table 1. Calculation of the probability value (PDF) and cumulative opportunity value (CDF) of the 

MSNBurr-IIa distribution using MultiBUGS and R functions 

X 

PDF  CDF 

MultiBUGS R 
Absolute 

difference 

 
MultiBUGS R 

Absolute 

difference 

(1) (2) (3) (4)  (5) (6) (7) 

-4.750 0.03467 0.03467 0.00000  0.3191 0.3191 0.00000 

-3.137 0.03750 0.03750 0.00000  0.3774 0.3774 0.00000 

-10.65 0.02084 0.02085 0.00001  0.1545 0.1545 0.00000 

-4.855 0.03446 0.03446 0.00000  0.3155 0.3154 0.00010 

16.340 0.01020 0.01020 0.00000  0.9314 0.9313 0.00010 

-8.602 0.02574 0.02574 0.00000  0.2022 0.2022 0.00000 

-4.278 0.03359 0.03558 0.00001  0.3357 0.3357 0.00000 

- 4.917 0.03433 0.03433 0.00000  0.3133 0.3133 0.00000 

-1.452 0.03936 0.03936 0.00000  0.4423 0.4423 0.00000 

11.670 0.01857 0.01857 0.00000  0.8655 0.8656 0,00010 

Total 0.00002  Total 0.0003 

 

This close agreement between the two methods indicates that the PDF and CDF values 

calculation in MultiBUGS is accurate. However, it's worth noting that this analysis was limited to 10 

sample points. Further validation with a larger sample size could provide additional confidence in the 

accuracy of the MultiBUGS implementation. 

3.5. The Implementation of simulation and real-world data 

The simulated data were generated using MultiBUGS with a sample size of 1,000 across four 

distinct scenarios. The data of four scenarios are visualized using a density plot, as shown in Figure 27. 

This plot displays the distribution of the simulated data for each scenario. The x-axis represents the 

simulation data, and the y-axis represents the density. The shape of each curve reflects the probability 

density function of the MSNBurr-IIa distribution under the specific parameters of those scenarios. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 27. Density plot simulation data (a) scenario 1; (b) scenario 2; (c) scenario 3; (d) scenario 4 

 

Figure 27 illustrates the density plots of four scenarios: three scenarios for the MSNBurr-IIa 

distribution with varying shape parameters (𝛼), and one scenario as the normal distribution. Figures 

27(a) through 27(d) display simulated data for right-skewed (scenario 1, 𝛼 = 0.1), symmetric (scenario 

2, 𝛼 = 1), left skewed (scenario 3, 𝛼 = 3), and normal distribution, respectively. This is consistent with 

the theoretical characteristics of the MSNBurr-IIa distribution, that when 0 < 𝛼 < 1 is a right-skewed 

distribution, 𝛼 = 1 is a symmetrical distribution, and 𝛼 > 1  is a left-skewed distribution. Consequently, 

the implemented module effectively captures and visualizes the distribution's flexible behavior 

Parameter estimation value validation was conducted using four specifically designed simulated 

data scenarios. These scenarios encompassed various parameter combinations to assess the performance 

of the estimation procedure under diverse conditions. A simplified "trial model" was initially used for 

parameter estimation. This model focused on the core components of the MSNBurr-IIa distribution to 

ensure efficient convergence and accurate estimation of the key parameters. The following Markov 

Chain Monte Carlo (MCMC) settings were employed for parameter estimation: 

 

Table 2.  Estimated value of simulation data parameters 

Scenario Parameter 
Simulation 

Parameter Value 

Estimation 

MSNBurr-IIa 

parameter 

Credible Interval 

2.5% 97.5% 

1 

𝜇 0.0 -0.0397 -0.0976 0.0253 

𝜏 1.0 1.0050 0.9634 1.0490 

𝛼 0.1 0.1054 0.0102 0.1185 

2 

𝜇 0.0 0.0154 -0.1075 0.1100 

𝜏 1.0 0.9738 0.9359 1.0130 

𝛼 1.0 1.1730 0.9560 1.5210 

3 

𝜇 0.0 0.0207 -0.0839 0.1176 

𝜏 1.0 0.9711 0.9333 1.0090 

𝛼 3.0 4.4510 2.5680 7.8240 

4 

𝜇 0.0 0.0598 -0.0463 0.1628 

𝜏 1.0 1.0450 0.9004 1.0880 

𝛼 - 1.1530 0.8593 1.5330 
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1. Burn-in: 1,000 iterations. This initial period was discarded to remove samples that may not 

represent the target distribution. 

2. Thinning: 1. Every sample from the chain was kept. 

3. Refresh: 100. The chain was refreshed every 100 iterations to improve mixing. 

4. Iterations: 10,000. A total of 10,000 iterations were run, resulting in 9,000 samples for analysis 

after the burn-in period. Table 2 Estimated value of simulation data parameters 

The average time needed to estimate the four scenarios was 120.3 seconds. Table 2 shows the 

values of the three previously determined parameters, all falling within the 95% credible interval. This 

indicates that the developed MSNBurr-IIa distribution module can be used for parameter estimation and 

produces results as expected. 

The Deviance Information Criterion (DIC) is used as an indicator for Bayesian model 

evaluation, such as in MultiBUGS. The model with the lowest DIC is generally preferred, as it suggests 

a better fit to the data. The MSNBurr-IIa distribution model's DIC will be compared to that of the normal 

distribution model when estimating parameters for the four simulated data scenarios. 

 

Table 3. DIC value of MSNBurr-IIa distribution and normal distribution 

Scenario 
DIC value ∆ DIC 

MSNBurr-IIa Normal  

1 3,461.0 4,202.0 741 

2 3,128.0 3,140.0 12 

3 3,088.0 3,169.0 81 

4 2,882.0 2,858.0 -24 

 

Table 3 shows that the Deviance Information Criterion (DIC) of the MSNBurr-IIa distribution 

was lower than that of the normal distribution in scenarios 1, 2, and 3. However, in scenario 4, the DIC 

of the MSNBurr-IIa distribution was higher than that of the normal distribution. This indicates that the 

MSNBurr-IIa distribution generally provided a better fit to the non-normal simulated data, with the 

greatest improvement in DIC observed for the right-skewed data in scenario 1. 

The normal distribution outperformed the MSNBurr-IIa distribution in scenario 4 because the 

MSNBurr-IIa distribution tends to have heavier tails than the normal distribution, even when the overall 

shape is symmetric. This characteristic may lead to a slightly worse fit when the true data-generating 

process has lighter tails [1]. The testing process confirmed the consistency between the data 

characteristics and the estimation results.  MultiBUGS had detected no errors in any of the testing steps. 

Therefore, it can be concluded that the MSNBurr-IIa distribution module created and added to 

MultiBUGS functions correctly and produces accurate results. 

The MSNBurr-IIa distribution module and its source code have been compiled into a single 

MultiBUGS program available on GitHub https://github.com/elianaputrir/MultiBUGS-

MSNBurr2a/blob/main/MultiBUGS2.zip.  Users must install Microsoft MPI before running the 

compiled MultiBUGS program from the zip file. 

The histogram of the economic growth rate data for districts/cities in 2021 reveals a right-

skewed distribution (Figure 28). This indicates that most districts/cities have lower economic growth 

rates, with a few outliers exhibiting much higher rates.  This observation is supported by the skewness 

test, which yielded a skewness value of 18.8663, significantly greater than 0, confirming the right-

skewed nature of the distribution. Furthermore, the Anderson-Darling normality test confirms that the 

data is not normally distributed (p-value < 0.05). This non-normality suggests that standard statistical 

methods that assume normality may not be appropriate for analyzing this data, and alternative methods 

may need to be considered. 

https://github.com/elianaputrir/MultiBUGS-MSNBurr2a/blob/main/MultiBUGS2.zip
https://github.com/elianaputrir/MultiBUGS-MSNBurr2a/blob/main/MultiBUGS2.zip
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Figure 28. Histogram of district/city economic growth rate data for 2021 

 

Parameter estimation was performed using 1,000 burn-in, 1 thin, 100 refresh, 10,000 iterations, 

and 9,000 samples. The prior for each parameter is normal (0; 1,0E-6) for 𝜇, gamma (1000; 1000) for 𝜏, 

and uniform (0,1; 10) for 𝛼. 

  
  

                               (a)                                         (b) 

 
                                                                        (c) 

Figure 29. Trace plot of the estimated parameter of economic growth rate data for 2021: (a) 𝝁; (b) 𝝉; 

(c) 𝜶 

Based on the trace plot of the 9.000 generated samples that were shown in Figure 29, the samples 

produced in the MCMC output are like fat caterpillars. It is shown that the parameter estimation process 

has reached a convergent condition. 

 

Table 4.  Summary of parameter estimates for the rate of economic growth data in 2021 

Parameter Estimation 
Confidence Interval 

2.5% 97.5% 

𝜇 2.8360 2.6720 2.9940 

𝜏 0.7541 0.7193 0.7908 

𝛼 0.4182 0.3567 0.4861 

 

The parameters of the MSNBurr-IIa distribution for the economic growth rate data in 2021 were 

estimated using Bayesian inference with MCMC sampling in MultiBUGS. The estimation process took 

49.938 seconds. Convergence of the MCMC chains was assessed using standard diagnostic tools to 

ensure reliable parameter estimates. Using the parameters estimated in Table 4, the mean, variance, 

skewness, and kurtosis of the MSNBurr-IIa distribution were derived and presented in Table 5. These 
characteristics provide a comprehensive summary of the distribution's shape and properties, which can 

be used to further analyze and interpret the economic growth rate data. 

Table 5 shows that the estimated skewness of the fitted MSNBurr-IIa distribution is 1.0810, 

indicating that the distribution is right-skewed. This is consistent with the value of alpha in Table 5, 
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which is less than 1. This finding aligns with the right-skewed shape observed in the histogram of the 

economic growth rate data. The agreement between the estimated skewness and the visual representation 

of the data suggests that the MSNBurr-IIa distribution effectively captures the characteristics of the 

economic growth rate data for regencies in Indonesia. 

 

Table 5. Characteristics of the MSNBurr-IIa distribution of economic growth data for 2021 

Characteristics Characteristic Value 

Mode 3.4050 

Variance 2.7789 

Mode 2.8240 

Skewnes 1.0810 

Kurtosis 2.8590 

 

4. Conclusion 

This study successfully integrated the MSNBurr-IIa distribution into MultiBUGS by creating 

and compiling a dedicated distribution module. Rigorous testing confirmed the module's functionality 
and accuracy. The testing process included: ensuring correct computation of the CDF and PDF, 

confirming the module's ability to create doodle without errors, comparing the outputs with the expected 

characteristics of the MSNBurr-IIa distribution, assessing the model's fit against the normal distribution. 

The results consistently demonstrated the module's correct implementation and the accuracy of its 

calculations. 

The MSNBurr-IIa distribution was then applied to analyze the economic growth rate data for 

regencies in Indonesia in 2021. The analysis revealed that the MSNBurr-IIa distribution effectively 

captured the characteristics of the data, particularly its right-skewness, as evidenced by the consistency 

between the estimated skewness, the histogram, and the skewness indicator. This successful application 

highlights the potential of the MSNBurr-IIa distribution for modeling and analyzing skewed data in 

various fields. 

Future research can explore several directions to further enhance the applicability and utility of 

the MSNBurr-IIa distribution. One potential area is extending its integration into other Bayesian 

modeling platforms such as pyMC for broader accessibility. Additionally, further studies can investigate 

the performance of the MSNBurr-IIa distribution in different real-world datasets, particularly in 

financial risk modeling, survival analysis, and climate data analysis. Moreover, conducting simulations 

across various sample size scenarios—ranging from small-scale samples to large-scale datasets—would 

provide deeper insights into the model's robustness and efficiency. 
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