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Introduction/Main Objectives: Abrasion causes severe environmental 

degradation and socio- economic losses, Waton and Karang Gundul Islands 

have already subsided due to erosion, posing risks to Panaitan Island, a national 

park that also faces deforestation, infrastructure development, and vegetation 

loss which may intensify abrasion. Background Problems: Limited spatial 

data on coastal abrasion in Panaitan Island hampers effective monitoring and 

management, highlighting the need for spatially explicit analysis. Novelty: 

This study identified and classified abrasion-prone areas on Panaitan Island (a 

rarely exposed island) with rarely variables which have impactful indices such 

as MVI, TCI, and LSWI. Research Methods: Landsat 8 and Sentinel-2 

imagery from 2018 and 2023 were analyzed to assess changes in vegetation, 

mangroves, surface temperature, and soil moisture. Random Forest, Support 

Vector Machine, and Logistic Regression were employed to classify abrasion-

prone areas. Finding/Results: The analysis revealed signs of abrasion covering 

2.04 km², with Random Forest achieving the highest accuracy (82.23%) and 

NDVI as the most influential variable; abrasion was mainly associated with 

declining forest and mangrove cover, soil moisture showed weak correlation, 

while moderate surface temperature had a positive effect. Preventive measures 

such as reforestation and mangrove rehabilitation are recommended to mitigate 

risks and ensure long-term environmental sustainability. 
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1. Introduction 

Shorelines are threatened by coastal abrasion, which also damages infrastructure and communities, 
jeopardizes human safety, and degrades the environment [1]. Land erosion in Europe reached about 
4,500 km² between 1975 and 2006, and by 2050, it is expected to reach 5,800 km² [2]. Over one-third 
of China's coastline has been eroded, and in certain places, shoreline retreat can approach 300 meters 
annually [3]. It is also anticipated that Indonesia, which has more than 17,000 islands and 80,000 km of 
coastline, will be badly impacted. With 115 islands expected to be at risk of submersion by 2100 and 28 
islands reported to have sunk in 2011, abrasion poses a concern to Indonesia's small islands [4]. Banten 
Province is one of the several coastal regions in Indonesia where abrasion is now occurring. 

Karang Gundul Island and Waton Island were lost to coastal abrasion in 2015, according to the 
Banten Province Government [5]. Panaitan Island and other nearby islands may also be under danger 
due to this circumstance. According to the Republic of Indonesia's Decree of the Minister of Forestry 
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No. SK.3658/Menhut-VII/KUH/2014, issued May 5, 2014, regarding the Designation of the Ujung 
Kulon National Park Forest Area, Panaitan Island is a protected forest area that is home to a variety of 
plants and animals and is a well-liked destination for ecotourism and surfing. But there are now serious 
risks: the number of unlawful operations in Ujung Kulon National Park has increased dramatically, from 
216 in 2019 to 680 in 2023. Abrasion can be accelerated by a variety of activities, including logging, 
illegal road construction, and the removal of vegetation [6]. 

Because their root systems prevent soil and sand from eroding, green vegetation, especially 
mangroves, is crucial in reducing abrasion [7]. Paradoxically, despite having the largest mangrove 
environment, Pandeglang Regency also saw the highest mangrove loss from abrasion, with 130.73 
hectares lost in 2023 [8]. Rising sea levels and temperatures brought on by climate change make abrasion 
much worse [1]. These circumstances give rise to worries over possible abrasion on Panaitan Island, 
which may eventually cause the island to sink. Monitoring signs of abrasion on Panaitan Island is further 
hampered by the absence of island-level statistics and information as opposed to district/city- level data. 

This study examines and categorizes regions that are prone to abrasions while examining important 
contributing elements. A number of indices are used, such as the Normalized Difference Vegetation 
Index (NDVI) for vegetation density [9], the Modified Normalized Difference Water Index (MNDWI) 
for shoreline changes using an overlay approach [10, 11], the Mangrove Vegetation Index (MVI) for 
detecting mangrove distribution [12], the Land Surface Temperature (LST) for tracking changes in 
surface temperature related to climate change [13], and the Land Surface Water Index (LSWI) for soil 
moisture conditions [14]. For classification modeling, machine learning techniques like Random Forest, 
Support Vector Machine (SVM), and Logistic Regression are used [15]. 

Various techniques for abrasion analysis and satellite image classification have been widely applied 
in related studies. One study assessed the influence of vegetation density on shoreline change using 
NDVI and DSAS and found that its effect was relatively small, accounting for only about 6.5% [16]. 
Another study comparing machine learning algorithms such as Random Forest, SVM, and stacking 
reported that SVM achieved the best performance, with accuracy reaching 0.983 [17]. Abrasion 
modeling using overlay and SWIR-1 techniques indicated a potential abrasion area of 118.50 hectares 
over a ten-year period [11]. Shoreline change analysis has also been conducted using tidal variables and 
linear regression methods [18]. In addition, the application of a Decision Tree algorithm using MNDWI, 
NDVI, EVI2, and GRVI variables resulted in an accuracy of 82.25% in coastal abrasion studies [19]. 
An integrated approach combining statistical techniques (EPR, AOR, and LR), remote sensing, and GIS 
achieved an RMSE of ±10 m [20]. Furthermore, in multispectral image classification, Random Forest 
produced the highest accuracy (81.2%) compared to Decision Tree and Rule-Based approaches [21]. 

This study is unusual because it combines remote sensing technology with a special set of indices 
like MVI, LSWI, and TCI—that are rarely used in earlier abrasion classification models. Imagery for 
each variable in this study was obtained from Landsat 8 and Sentinel-2. However, the study is limited 
by the omission of other variables that could affect abrasion, such as wave height. Additionally, it 
thoroughly examines the interactions between variables. Additionally, research concentrating on the risk 
of abrasion on a small island have not yet been conducted on Panaitan Island. It is anticipated that this 
study will provide light on how to stop small islands from being lost to abrasion. This work intends to 
create a machine learning-based categorization model of abrasion sites by identifying probable abrasion 
risks on Panaitan Island, taking into account factors including vegetation density, soil conditions, surface 
temperature, and mangrove distribution. In order to classify abrasion-prone areas of Panaitan Island 
using optimal machine learning techniques (Support Vector Machine, Random Forest, and Logistic 
Regression) with satellite imagery, this study aims to identify key variables for classifying abrasion 
areas and estimating impacted zones, while providing remote-sensing-based insights to support abrasion 
monitoring and mitigation on Panaitan Island. 

2. Material and Methods 

2.1. Data Source 

The data were obtained from Sentinel-2 and Landsat imagery (Landsat-5, Landsat-7, and Landsat-
8) accessed through the Google Earth Engine (GEE) Data Catalog to analyze shoreline abrasion on 
Panaitan Island. Shoreline abrasion was defined as the dependent variable and classified into abrasion 
and non-abrasion categories based on coastline overlay analysis, while the independent variables 
consisted of changes in the Mangrove Vegetation Index (MVI), Normalized Difference Vegetation 
Index (NDVI), Land Surface Water Index (LSWI), and Temperature Condition Index (TCI) observed 
from January 1 to December 31 in 2018 and 2023. A five-year observation interval was selected because 
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it is sufficient to capture abrasion dynamics compared to shorter periods [11,16]. The imagery was 
processed using annual median pixel values, which were averaged to generate a 20 m × 20 m spatial 
grid in QGIS. This spatial resolution was chosen to preserve detailed spatial variation while effectively 
covering coastal areas and is consistent with previous studies employing grid sizes of 50 × 50 m [22] 
and 10 × 10 m [23] for vegetation and erosion analyses. The characteristics of the variables and data 
sources used in this study are summarized in Table 1. 

 

Table 1. Data sources 

No. Variable Description Sources References 

1. X1 Change in Mangrove Vegetation 

Index (ΔMVI) 2018 and 2023 

Sentinel-2 [12, 24, 25] 

2. X2 Change in Normalized Difference 

Vegetation Index (ΔNDVI) 2018 

and 2023 

Sentinel-2 [26] 

3. X3 Change in Land Surface Water 

Index (ΔLSWI) 2018 and 2023 

Sentinel-2 [14, 27] 

4. X4 Change in Temperature Condition 

Index (ΔTCI) 2018 and 2023 

Landsat-8 [28] 

5. Y Change in Abrasion (1) and Non-

Abrasion (0) Area Categories 2018 

and 2023 

Landsat-5,7,8 [10] 

 

2.2. Analysis Method 

The analytical procedure began with the preparation of satellite image data, including extraction, 
scaling, and categorization, followed by class balancing using the Synthetic Minority Over-sampling 
Technique (SMOTE) to address the lower number of abrasion samples compared to non-abrasion 
samples. The dataset was then divided into training and testing subsets. Exploratory data analysis was 
conducted using descriptive statistics, while variable distributions and relationships were examined 
through boxplots and correlation analysis, complemented by multicollinearity testing using correlation 
matrices and the Variance Inflation Factor (VIF), where VIF values greater than 10 indicate 
multicollinearity [29]. This step supports attribute selection and improves the stability and performance 
of machine learning models [30]. Abrasion classification was subsequently performed using Random 
Forest (RF), Support Vector Machine (SVM), and Logistic Regression, with optimal model parameters 
determined through Bayesian optimization and five-fold cross-validation. Model performance was 
evaluated using accuracy, precision, recall, and F1-score, supported by confusion matrix validation, 
georeferencing, and spatial visualization of the classification results. In addition, Feature Importance 
Ranking (FIR) was applied to assess the contribution of each variable, with RF and SVM selected based 
on their documented superior performance in satellite image classification [17,21], while Logistic 
Regression was included due to the binary nature of the abrasion classification. 

2.2.1.  Random Forest 

Random Forest is an ensemble machine learning technique including many decision trees utilized 
for categorization purposes [31]. The method employed for identifying optimal parameters is Grid 
Search. This study's Random Forest encompasses n_estimators from 1 to 100, max_depth from 1 to 10, 
min_samples_split from 2 to 10, and min_samples_leaf from 1 to 10. Furthermore, there exists a 
bootstrap parameter with options of True or False, along with max_features varying from 0.1 to 1. 

2.2.2.  Support Vector Machine 

The Support Vector Machine (SVM) seeks to identify the optimal separating hyperplane for precise 
data classification. The objective is to reduce classification errors in both training and unseen test 
datasets [32]. This study's SVM parameters consist of C values of 0.1, 1, and 10; gamma values of 1, 0, 
0.1, and 0.01; and kernel options of 'rbf' and 'linear'. 
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2.2.3.  Logistic Regression 

Logistic regression is frequently selected for binary response models. Its reliance on chances 
facilitates interpretation, rendering the outcomes comprehensible to the general populace. Conversely, 
the probit and complementary log-log models are exclusively applicable to prospective data due to their 
dependence on probability [33]. This study's Logistic Regression settings comprise C values of 0.01, 
0.1, 1, and 10; max_iter values of 100, 200, and 300; solver options of 'lbfgs', 'liblinear', and 'saga'; and 
class_weight options of None and 'balanced'. 

2.2.4. Model Evaluation 

The optimal machine learning model was selected to achieve the most effective categorization 
results for abrasion-prone areas. This study employed four primary metrics to evaluate model 
performance: accuracy, precision, recall, and F1-score [34]. The equations for each assessment metric 
are as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                            (1) 

𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                        (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                  (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                            (4) 

where TP (True Positive) denotes the number of abrasion-prone areas correctly classified as prone, TN 
(True Negative) represents the number of non–abrasion-prone areas correctly classified as non-prone, 
FP (False Positive) refers to the number of non–abrasion-prone areas incorrectly classified as prone, and 
FN (False Negative) indicates the number of abrasion-prone areas incorrectly classified as non-prone. 

 

3. Results and Discussion 

This chapter aims to identify and analyze each change in variables in this study, after which a 
classification of abrasion and non-abrasion areas is carried out so that all existing information can be 
elaborated and analyzed. This study was performed on Panaitan Island, Ujung Kulon National Park, 
utilizing satellite imagery with a resolution of 20m x 20m. The abrasion on Panaitan Island was 
examined by overlay analysis. A total of 11,545 data records were collected, comprising 4,867 records 
in the abrasion category (1) and 6,678 records in the non-abrasion category (0). 

3.1. Exploration of variables for changes in environmental conditions 

Prior to modeling the classification of abrasion and non-abrasion zones, researchers examined the 
environmental conditions in Panaitan, focusing on changes that transpired between 2018 and 2023 as 
indicators or variables for the model. 

3.1.1.  Coastline 

Shoreline abrasion in this study was identified through an overlay analysis of coastline maps 
derived from satellite imagery in 2018 and 2023, enabling the detection of coastline retreat as an 
indicator of abrasion. Grid cells with a spatial resolution of 20 m × 20 m were classified as abrasion (1) 
when they intersected areas showing coastline retreat—depicted as red zones between the two 
observation years—and as non-abrasion (0) otherwise, as illustrated in Figure 1. The spatial distribution 
reveals that multiple sections of Panaitan Island exhibit clear signs of abrasion, with the most 
pronounced changes occurring along the eastern coastline. This pattern suggests that the eastern coast 
is more exposed to wave action and hydrodynamic forces, making it particularly vulnerable to shoreline 
retreat over time. 
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Figure 1. Map of indication of abrasion area of Panaitan Island 

3.1.2.  Mangrove Vegetation Index 

The Mangrove Vegetation Index (MVI) assesses the health and spread of mangrove vegetation 
through the comparison of NIR, Green, and SWIR values. Mangroves serve as a significant signal 
closely associated with abrasion overall. The Mangrove Vegetation Index (MVI) assesses mangrove 
health, distribution, and density using Sentinel-2 data, calculated from the green, near-infrared (NIR), 
and shortwave infrared (SWIR) bands as: MVI = (NIR − Green) / (SWIR − Green) [12, 24, 25]. Figures 
2(a) and 2(b) indicate that certain coastal regions of Panaitan Island possess mangrove vegetation. 
Nevertheless, in comparing the two years in th eir entirety, numerous regions exhibited a decline in 
mangrove vegetation. Moreover, an increased index value correlates with greater mangrove density. 
Mangroves function as wave breakers and enhance soil stability during significant wave events. 

 

                   

Figure 2. (a) MVI distribution map 2018 Panaitan; (b) MVI distribution map 2023 Panaitan  

3.1.3.  Normalized Difference Vegetation Index 

Mangroves serve as a significant signal closely associated with abrasion overall. The Normalized 
Difference Vegetation Index (NDVI) monitors vegetation density with an index value range from -1 to 
+1. The Normalized Difference Vegetation Index (NDVI) assesses vegetation health using the red and 
near-infrared (NIR) bands and is calculated as (NIR − Red) / (NIR + Red) [35]. According to Figures 
3(a) and 3(b), from 2018 to 2023, certain regions of the coast of Panaitan Island, specifically the 
southwest and east, exhibited a diminishing green hue, signifying a reduction in vegetation density. In 
contrast, the central portion of the forest retained its density and verdancy due to the absence of 
residential developments. 

 

                   

Figure 3. (a) NDVI distribution map 2018 Panaitan; (b) NDVI distribution map 2023 Panaitan 

a b 

a b 
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3.1.4.  Land Surface Water Index 

The Land Surface Water Index (LSWI) is used to measure soil moisture with an index range of -1 
to +1. The Land Surface Water Index (LSWI) evaluates current soil moisture using the near-infrared 
(NIR) and shortwave infrared (SWIR) bands and is calculated as (NIR − SWIR) / (NIR + SWIR) [14]. 
Figures 4(a) and 4(b) demonstrate that negative vegetation index values signify aquatic regions, 
including beaches and the ocean. From 2018 to 2023, Panaitan Island's coastline witnessed a reduction 
in vegetation density, however the interior forest retained its density and verdancy due to the absence of 
settlements. In the figure, there is an indication that the 2018 image appears darker. This may be because 
throughout that year, the dry season was more dominant, resulting in lower LSWI values, which appear 
darker. Conversely, during years with a longer rainy season, LSWI values are generally higher and 
therefore appear brighter. The imagery in GEE has been processed using a cloud-mask filter to remove 
clouds as effectively as possible, and the images shown represent the best results obtained in this study 
for the LSWI imagery. 

 

                   

Figure 4. (a) LSWI distribution map 2018 Panaitan; (b) LSWI distribution map 2023 Panaitan 

3.1.5.  Temperature Condition Index 

The Temperature Condition Index (TCI) assesses coastal thermal pressure. The TCI index spans 
from 0 to 100, indicating that a value closer to zero corresponds to a higher surface temperature pressure. 
The Temperature Condition Index (TCI) evaluates drought conditions using land surface temperature 
(LST) and is calculated as ((LSTₘₐₓ − LSTᵢ) / (LSTₘₐₓ − LSTₘᵢₙ)) × 100 [13]. Figures 5(a) and 5(b) show 
a striking difference in the surface temperature index between sea and land in 2018 and 2023. Higher 
TCI values indicate cooler and more stable temperatures, with islands having higher values due to the 
presence of forests. Overall, 2018 had more areas with cooler temperatures than 2023, although the 
average coastal TCI showed the opposite. There are several limitations when using satellite imagery, 
one of which is the presence of clouds. However, in this study, a cloud-mask filter in GEE was applied 
and tested multiple times, and the images shown above represent the best results obtained for the TCI 
imagery. 

 

                   

Figure 5. (a) TCI distribution map 2018 Panaitan; (b) TCI distribution map 2023 Panaitan 

3.1.6.  Relationship Between Variables 

All independent variables have a correlation of less than 0.8 with one another.  Abrasion exhibits a 
negative correlation with alterations in NDVI (-0.49) and MVI (-0.24), suggesting that a decline in 
vegetation and mangrove density heightens the risk of abrasion.  LSWI exhibits a correlation of 0.00, 

 

b a 

a b 
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signifying an absence of linear association with abrasion.  TCI exhibits a positive correlation of 0.23, 
suggesting that regions with declining surface temperatures are more prone to abrasion; however, this 
value may be affected by external variables such as climate change or pandemics, as illustrated by the 
correlation coefficients in Figure 6. 

 

  

Figure 6. Heatmap of correlation coefficient between variables 

3.1.7.  Characteristics of Abrasion and Non-Abrasion Area Categories 

The index delta is calculated by subtracting the 2018 index from the 2023 index; thus, a negative 
value indicates that the 2023 index is lower than the 2018 index, and vice versa. According to Table 2, 
the abrasion zone on Panaitan Island exhibits an average decline in NDVI and MVI, signifying a 
reduction in the density of green vegetation and mangroves that mitigate abrasion, this could be caused 
by illegal activities that occur in the Ujung Kulon area, one of which is Panaitan Island such as logging, 
land clearing, and resource extraction. The variation in LSWI is minimal between the abrasion and non-
abrasion zones; however, the abrasion zone appears drier in 2023 owing to diminished water-retaining 
vegetation. The TCI in the abrasion zone is positive, signifying that the surface temperature in 2023 was 
lower than in 2018, potentially affected by external forces such as the pandemic that diminished human 
activity [36]. 

 

Table 2. Average value of index change by category 

Index Non-Abrasion (0) Abrasion (1) 

ΔMVI 0.206443 -0.28326 

ΔTCI -0.319361 0.438194 

ΔNDVI 0.420855 -0.577454 

ΔLSWI -0.000786 0.001078 

3.2. Classification of Abrasion Areas 

Data extracted from satellite photos will be utilized to predict the classification of abrasion zones 
through machine learning techniques.  The modeling step encompasses multicollinearity assessment, 
machine learning model creation, evaluation of model performance, essential feature selection, and 
classification analysis of abrasion-susceptible regions on Panaitan Island. 

3.2.1.  Multicollinearity Test 

This investigation necessitates a multicollinearity test due to the utilization of logistic regression. 
The test findings demonstrate that all VIF values for the variables in this study are below 10 (VIF <10). 

Variable 

V
ar

ia
b

le
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The VIF test findings indicate no multicollinearity in the data. By adhering to the criteria for 
multicollinearity, all independent variables may be utilized in the training and validation processes to 
identify optimal parameters and evaluate estimations. 

3.2.2.  Classification Models 

This study analyzes machine learning algorithms based on supervised learning, specifically 
Random Forest, Support Vector Machine, and Logistic Regression. The optimal parameter search was 
conducted via Bayesian optimization with k-fold cross-validation [37]. The findings indicate that the 
ideal parameters for Random Forest are a max_depth of 8, max_features of 0.9395, min_samples_leaf 
of 4, min_samples_split of 7, n_estimators of 42, and random_state of 42. The ideal settings for the 
Support Vector Machine are C = 10, gamma = 1, and a linear kernel. Logistic Regression attains optimal 
performance with C = 0.1, max_iter = 100, solver = liblinear, and a balanced class weight. 

3.2.3.  Machine Learning Model Performance 

Model evaluation is an essential process for identifying the optimal model. The evaluation of the 
classification model in this study was performed utilizing accuracy, precision, recall, and F1-score [34]. 
The subsequent evaluation measures pertain to each machine learning algorithm. The subsequent 
evaluation measures pertain to each machine learning algorithm. However, the analysis is limited to the 
period between 2018 and 2023, The spatial resolution of the data, derived from Landsat 8 and Sentinel- 
2 at 20 × 20 m per record in coastline area Panaitan’s island, generates a large dataset that is effectively 
suitable for machine learning applications. 

According to Table 3, the Random Forest model demonstrated superior performance compared to 
the other machine learning algorithms evaluated in this study. This model achieved an accuracy of 
82.23%, with a precision of 0.82, a recall of 0.82, and an F1-score of 0.82, indicating a balanced and 
robust classification capability for both abrasion and non-abrasion classes. The strong performance of 
Random Forest can be attributed to its ability to handle nonlinear relationships and complex interactions 
among environmental variables without requiring strict distributional assumptions. Moreover, Random 
Forest is less sensitive to noise and multicollinearity than parametric models, making it particularly 
suitable for large, high-dimensional datasets derived from multi-source satellite imagery. Consequently, 
this model was selected to further analyze feature importance and assess the relative contribution of each 
environmental variable to shoreline abrasion classification. 

 

Table 3. Machine learning model performance 

Parameter Random forest Support vector machine Logistic regression 

Accuracy 0.8223 0.7434 0.7422 

Precision 0.82 0.76 0.75 

Recall 0.82 0.74 0.74 

F1-score 0.82 0.74 0.74 

 

3.2.4.  Feature Importance 

Feature importance for identifying factors that significantly influence the constructed model, as 
illustrated in Figure 7. NDVI is the most significant variable in the model. The values of each variable 
in the abrasion categorization are as follows: NDVI is 0.5304, TCI is 0.2131, LSWI is 0.154, and MVI 
is 0.1025. While NDVI exerts the most significant influence, all variables contribute quite uniformly to 
the model. This contrasts with another research, who determined that NDVI exerts only a 6.5% influence 
on coastline alterations, which is statistically insignificant [16]. This research in line with other 
researches indicating that vegetation mitigates wave action, preserves soil moisture, endures wind, and 
stabilizes sediment [7, 38, 39]. Climate change has widespread impacts on maritime and coastal sectors, 
leading to rising temperatures, sea-level rise, and extreme weather events, which contribute to coastal 
abrasion that threatens ecosystems and coastal communities [1]. 
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Figure 7. Feature importance graph random forest model 

 

3.3. Area Estimation and Classification Analysis of the Abrasion Area of 
Panaitan Island 

Spatial analysis conducted using QGIS indicates that Panaitan Island experienced shoreline 
abrasion covering an estimated area of 2.04 km² during the period 2018–2023, out of a total land area 
of 125.77 km² in 2023. Areas affected by abrasion are generally characterized by noticeable reductions 
in the density of green vegetation, particularly coastal forests and mangroves that play a critical role in 
stabilizing shorelines and dissipating wave energy. Correlation analysis shows that changes in soil 
conditions and moisture, as represented by LSWI, do not exhibit a strong linear relationship with 
abrasion occurrence. However, the machine learning results demonstrate that these variables still 
contribute meaningfully to abrasion classification, suggesting that their influence may be nonlinear or 
interact with other environmental factors. This finding underscores that shoreline abrasion on Panaitan 
Island is driven by a combination of vegetation degradation and environmental dynamics rather than by 
a single dominant factor. 

4. Conclusion 

This study employs remote sensing data from Panaitan Island, Banten, comprising 11,545 coastal 
records, to classify abrasion-prone areas based on variations in vegetation density (NDVI), mangrove 
density (MVI), soil moisture (LSWI), and surface temperature (TCI) using machine learning, identifying 
Random Forest as the best-performing model (82.23% accuracy) with NDVI as the most influential 
factor, estimating approximately 2.04 km² of abraded area from 2018 to 2023 linked to human activities 
such as illegal road construction and logging, while surface temperature, climatic changes, and 
vegetation conditions also serve as key indicators. The classification could achieve better performance 
if additional marine environmental variables, such as wave height and length, were included, although 
the study remains limited by its temporal span, spatial resolution, and unobserved environmental factors. 
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