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introduces a Relative Spatial GDP Index (RSGI) constructed from geospatial
big data such as remote sensing and point of interest (POI) to estimate GRDP
Keywords: more granular in East Java. This approach represents the first geospatial data
East Java; Geospatial Big Data; driven GRDP index developed at such fine spatial resolution in Indonesia.
GRDP; Relative Spatial GDP Research Methods: Four weighting schemes were applied to generate RSGI
Index; Remote Sensing; Robust variations, which were then evaluated through regression modeling against
Regression official GRDP. They are equal weight, pearson correlation, spearman
correlation, and principal component analysis (PCA). Finding/Results: The
RSGI PCA produced the best performance (RMSE = 0.73047, MAE =
0.48185; MAPE = 7.00%; R? = 0.7618). PCA weight outperformed other
weight by capturing shared variance and generating objective weights that
better represent spatial economic intensity. The RSGI PCA demonstrates a
strong and significant correlation with GRDP at the sub-district level and
provides a robust tool for fine-scale economic estimation.

1. Introduction

Economic growth is one of the international development agendas included in the eighth point of
the 2030 Sustainable Development Goals (SDGs). This agenda was also adopted by the Indonesian
government in the National Medium-Term Development Plan (RPJMN) for the 2020-2024 period [1].
The expected economic growth target for the 2020-2024 period will increase by an average of 5.7-6.0
percent per year [1]. National economic growth, according to data from the Central Bureau of Statistics
(BPS) of the Republic of Indonesia as of February 2023, grew by 5.31% [2]. This achievement is still
below the economic growth target to be achieved in the prepared RPJMN. From this description, the
Gross Domestic Product (GDP) has a special place, which is the focus of the SDGs development.
According to [2], GDP is an important indicator to determine economic conditions in a country over a
certain period.

@ ® @ Copyright: © 2025 by the authors.
T This an open access article distributed under the terms and conditions of the CC BY -NC 4.0.


https://doi.org/10.34123/jurnalasks.v17i2.856
https://jurnal.stis.ac.id/
mailto:rifqi.ramadhan@bps.go.id

Estimating Economic...|Rifqi Ramadhan, et al.

Economic development is a series of efforts to reduce unemployment, improve people's welfare,
and minimize inequality in people's incomes. In measuring the progress or health of a country's
economy, the Gross Domestic Product (GDP) is usually used as an important indicator both of current
prices and based on constant prices (fixed prices). Meanwhile, to measure the economic progress or
health of a province, district, or city, the Gross Regional Domestic Product (GRDP) is used as one of
the indicators. GRDP is one indicator that can measure economic activity in a region. GRDP is prepared
using three approaches, namely production, income, and expenditure, and is presented based on current
prices and constant (real) prices. Although the components of presenting GRDP data are different for
each calculation approach, conceptually, these three approaches will produce the same figure [3]. GRDP
at current prices (nominal GRDP) is prepared based on prices prevailing during the calculation period
and aims to look at the structure of the economy. Meanwhile, GRDP at constant (real) prices is prepared
based on prices in the base year [2]. GRDP at current prices shows the ability of economic resources
produced by a region. GRDP at constant prices can be used to show the rate of economic growth as a
whole or for each category from year to year. GRDP per capita at current prices shows the value of
GRDP per population, while GRDP per capita at constant prices is used to determine the real economic
growth per capita population of a region [3].

GRDP using the expenditure approach is calculated based on all components of final demand, such
as Final Household Consumption Expenditure, Final Consumption Expenditures for Non-Profit
Institutions serving Households, Government Final Consumption Expenditure, Gross Domestic Fixed
Capital Formation, Changes in Inventories, and Net Exports. In the final household consumption
expenditure (PKRT) component, there are various data sources used to compile GRDP data, such as the
National Socio-Economic Survey (SUSENAS). Within one year, SUSENAS data collection was carried
out twice, namely in March and in September [4]. However, to carry out periodic monitoring in a shorter
time and in more detail in terms of area or granularity, SUSENAS data cannot accommodate this,
considering that SUSENAS is conducted every six months and the level of presentation is only at
districts or cities.

On the other hand, the calculation of GRDP uses a production approach using various data sources
collected by BPS as well as compilation results from various other data sources. For example, in
calculating GRDP for the agricultural, forestry, and fisheries components, one of the data sources used
comes from the agricultural census, which is carried out once every ten years. Conventional survey data
collection conducted in Indonesia for the calculation of GRDP has various weaknesses, such as
SUSENAS, which is conducted every six months with a method that is limited in scope, costs a lot, and
takes a long time. If monitoring in the short term, periodically, and in more detail in terms of SUSENAS
data areas cannot provide it, a supporting data source with a faster and more efficient method is needed.
In addition, similar problems can also be found in other GRDP-forming data sources, such as the
SKLNP, which is carried out every year on a quarterly basis, as well as the agricultural census, which
is carried out once every 10 years.

Today, many studies have turned to alternatives data sources such as satellite imagery, which is the
result of remote sensing, and other big data sources, such as Point of Interest (POI) from OpenStreetMap
(OSM). The use of other big data sources has been carried out by [5], and it can be concluded that POI
can effectively differentiate industrial and commercial areas and therefore has the potential to improve
GRDP mapping. Previous research has shown that Visible Infrared Imaging Radiometer Suite (VIIRS)
remote sensing data that captures Nighttime Light Intensity (NTL) has a positive correlation to GDP in
a region [6]-[10]. In addition, Sentinel-2 Multispectral Instrument Level-2A, which captures the
Normalized Difference Vegetation Index (NDVI), influences GDP and has a significant correlation
[11]-[16]. Other composite indices, such as the Normalized Difference Water Index (NDWI), detect a
reduction in water sources associated with GDP and population growth [17]. Then, the Normalized
Difference Built-Up Index (NDBI) relates to the area of built-up land and the expansion of urban areas
[18]. Sentinel-5P satellite imagery is designed to detect pollution emissions in an area such as CO, which
is closely related to urban areas and economic growth [15], [19], and NO2 shows results that have a
strong correlation with the value of GDP [20]. and SO2 emissions, along with NO2, are indicated to
have a relationship to the intensity of energy use and economic growth [21]. Therefore, pollution
emissions from CO, SO2, and NO2 can be used to determine the GDP value of an area because they
have an association with economic growth. Images derived from MODIS can detect the magnitude of
the ground surface temperature in an area during the day and night where the ground surface temperature
will have a significant impact due to an increase in population, industrial activity, infrastructure
development, and socio-economic activities [22]. The accurate use of elevation data, namely the Digital
Elevation Model (DEM) derived from ASTER satellite imagery, can provide a scientific and socio-
economic point of view, and provide important things in geomorphology [23]. Another data source
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originating from OpenStreetMap (OSM) can be utilized as a POI data source, which is a geospatial data
source with geographic locations and descriptions based on categories and can effectively differentiate
industrial and commercial areas, so that it has the potential to improve the precise GDP mapping of
secondary and tertiary sectors [5]. Thus, the source of big data from satellite imagery and POI can be
used as an alternative data source in data collection to estimate the GDP value of a region using relatively
low costs, a short time frame, and continuous updating as needed.

Furthermore, recent literature shows a growing shift toward leveraging diverse geospatial big data
sources to strengthen the ability of models to map economic indicators at the sub-national scale. The
previously dominant linear regression approaches are now considered less adequate due to their
limitations in capturing non-linear relationships and inter-variable spatial interactions. This limitation
has encouraged researchers to adopt more flexible Machine Learning (ML) methods, including Random
Forest which have demonstrated notable improvements in GDP estimation, particularly when combining
multisource remote sensing data with POI data for regional economic activity mapping in China [24].
Empirical evidence shows that the Random Forest model demonstrated strong predictive performance,
achieving R? values of 0.95 for non-agricultural GDP. Alongside these developments, Deep Learning
(DL) approaches, especially Convolutional Neural Networks (CNN) applied to high-resolution daytime
satellite imagery and nightlights data have shown promise in identifying subtle spatial patterns linked
to economic activity in China. Using an attention-enhanced VGG-16 architecture to extract image
features, this approach produced a strong predictive result in predicting localized economic activity,
reaching an R? value of 0.71 [25]. Incorporating remote sensing data has also been shown to substantially
improve the ability for GRDP mapping, particularly within dense urban environments such as NTL from
NPP-VIIRS dan built-up area extraction from Sentinel-2 images, where the predicting of GRDP shows
the R? values to 0.82 in Shandong Province, China [26]. In addition, downscaling mapping techniques
are increasingly adopted to redistribute official aggregate statistics into finer spatial units. Recent
advances that combine NTL, POI, and multispectral features within multi-scale deep learning
frameworks have further demonstrated the potential to generate GDP maps that are more stable, detailed,
and representative of real economic conditions [27]. However, despite the rapid growth of geospatial
and machine learning based approaches, most existing studies remain centered on improving prediction
accuracy rather than constructing a spatially explicit economic index that can capture relative economic
intensity at finer administrative levels, which is essential for evidence-based local policy and
development planning. Therefore, this study develops a spatial GDP index that is crucial for capturing
economic activity as the alternatives data to provides a more robust evidence base for development-
oriented policymaking.

For the record, the alternatives data can only be used as support for SUSENAS data and cannot be
used as the essence or core of data from the field obtained from SUSENAS. Provinces in Java dominate
the performance and structure of the Indonesian economy spatially, with a contribution of 56.48% and
a growth 0f 5.31% in 2022 [2]. East Java Province was chosen as the case study in this research because
East Java Province is in second place after DKI Jakarta in terms of achieving the GRDP level in Java
Island (BPS, 2022). To anticipate the weakness of GRDP data collection, which still uses conventional
surveys, the contribution of this research is to implement the utilization of integrating remote sensing
data and POI data as geospatial big data sources a combination that has not yet been explored in the
Indonesian context to estimate GRDP at a smaller granular level down to the sub-district level and map
it so that it can be easily interpreted. This granularity data is crucial because economic activities and
development patterns often exhibit significant heterogeneity within a single district or city. Relying
solely on aggregate district/city level data masks critical localized disparities in wealth, infrastructure
needs, and the effectiveness of local policies, thereby limiting the government's ability to conduct
targeted intervention, policy formulation, and balanced regional planning. Then, this research also offers
the first empirical contribution of its kind in Indonesia, demonstrating the potential of geospatial big
data to generate spatially detailed economic indicators beyond the limitations of conventional survey-
based GRDP statistics.

2. Material and Methods
2.1. Study Area

This study was conducted in East Java Province, Indonesia, with 2022 as the reference year. East
Java consists of 38 regencies and municipalities and 666 sub-districts, covering an area of approximately
48,000 km?, making it the largest province on Java Island. During the period 2020-2022, East Java
recorded the second-highest Gross Regional Domestic Product (GRDP) at constant 2010 prices, after
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DKI Jakarta, which motivated its selection as the study area. Moreover, the province exhibits substantial
economic diversity across manufacturing, agro-industry, agriculture, services, and trade sectors,
reflecting significant geographic and socio-cultural heterogeneity. Figure 1 presents the study area along
with the official GRDP distribution of East Java Province in 2022.

Official GRDP Map (Regency/Municipality)
East Java, Indonesia
2022

L x'/"“s?'\f"ﬂ,f
GRDP (Billion)
[ 1426 - 12727
7
27 - 30229
B 30229 - GO243 0 25 50 75 100 km
W 60243 - 434264 — T 3

Figure 1. The official GRDP at constant prices mapping in East Java, Indonesia in 2022
2.2. Big Data

Big data has become a crucial concept in both industry and academia, encompassing various
meanings. Big data as an information asset characterized by volume, velocity, and variety (the 3Vs),
requiring specific technologies and analytical methods to derive value [29]. Its application is expanding
rapidly across sectors such as industry, environment, and economic development. A specialized form,
geospatial big data, refers to spatially referenced data, including land characteristics like land use [30].
This data generally appears in two formats: raster data, comprising images from sources like drones or
satellites (e.g., Google Earth), and vector data, consisting of points, lines, and polygons obtained through
platforms such as the OpenStreetMap API [30].

2.3. Satellite Imagery

Satellite imagery refers to images captured by sensors mounted on satellites orbiting more than 400
km above Earth’s surface [31]. These images result from remote sensing, a process in which sensors
record energy emitted or reflected by objects on Earth [31]. Remote sensing involves collecting data
from aircraft or satellites to measure and observe terrestrial features [32] and includes all techniques for
capturing and processing electromagnetic recordings of the Earth’s surface [33]. Its ability to provide
consistent, repetitive observations enables the monitoring of both short- and long-term environmental
changes caused by natural or human activities [32].
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Remote sensing serves as a data source, a science, and a tool simultaneously. As a data source, it
records physical properties of distant objects through emitted or reflected energy. As a science, it applies
systematic processes such as measurement, data analysis, and interpretation. As a tool, it supports
applications ranging from resource inventory to ecological assessment [34].

Remote sensing data are characterized by four key resolutions:

1. Spatial Resolution, the smallest detectable object in imagery, represented by pixel size [31].
Higher resolution (smaller pixels) yields more detailed information [35]. Examples include
very high-resolution imagery (Piades, 0.5 m), high (Iconos, 4 m), medium (Landsat, 15-30 m),
and low (MODIS, 250-1000 m) [31].

2. Temporal Resolution, the frequency with which a satellite revisits the same location [31]. A
shorter revisit time means higher temporal resolution; this depends on orbit type, sensor
characteristics, and image swath width [35], [36].

3. Spectral Resolution, the sensor’s ability to distinguish between different wavelengths of the
electromagnetic spectrum. Higher spectral resolution means more and narrower spectral bands
[31].

4. Radiometric Resolution, the number of bits used to represent energy levels per pixel,
determining brightness detail. Greater bit depth (e.g., 8-bit, 10-bit, 16-bit) indicates higher
radiometric resolution [31], [37].

Satellite imagery is available from various sources such as VIIRS, Sentinel-2, MODIS, Sentinel-
5P, and ASTER. Subsequent analyses often utilize imagery from these satellites to explore the
relationship between environmental observations and socio-economic indicators, including GRDP
formation.

2.4. Visible Infrared Imaging Radiometer Suite (VIIRS)

The Suomi National Polar Partnership (SNPP) is a satellite operated jointly by NASA and NOAA,
equipped with the Visible Infrared Imaging Radiometer Suite (VIIRS) as its primary imaging sensor.
VIIRS is distinct among meteorological satellite sensors for its ability to capture short-wave infrared,
near-infrared, and nighttime visible light emissions [38]. Research utilizing nighttime light data
expanded following the release of annual stable light products from the DMPS-OLS by NOAA’s Earth
Observation Group (EOG). Since the launch of VIIRS in 2011, EOG has provided improved nighttime
light datasets featuring monthly updates, higher spatial resolution, and enhanced data quality [39]. These
advancements make VIIRS data highly valuable for studies analyzing social and economic activities,
particularly those related to economic growth [39][40].

2.5. Sentinel-2 Multispectral Instrument Level-2A

Sentinel-2 is a European satellite equipped with the Multispectral Instrument (MSI) Level-2A,
launched in 2015, designed for high-resolution optical imaging of the Earth’s surface. Unlike radar
satellites that utilize Synthetic Aperture Radar Ground Range Detected (SAR-GRD) technology to
capture images through cloud cover [41], Sentinel-2 focuses on multispectral observation. Compared to
other medium-resolution satellites, Sentinel-2 offers superior spatial resolution, reaching 10 meters in
the B4 (Red), B3 (Green), B2 (Blue), and B8 (Near-Infrared/NIR) bands. The satellite’s temporal
resolution, its revisit frequency is 10 days for a single satellite and 5 days when two satellites operate
together.

Sentinel-2 is a multispectral imaging satellite mission that supports the Copernicus Land
Monitoring program, focusing on observing vegetation, land cover, water bodies, inland waterways, and
coastal areas. Its combination of sensing bands enables the development of various composite indices,
including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index
(NDWI), and Normalized Difference Built-Up Index (NDBI). Sentinel-2 offers high spatial resolution
of up to 10 meters in the B4 (Red), B3 (Green), B2 (Blue), and B8 (Near Infrared/NIR) bands, with a
temporal resolution of 10 days, or 5 days when two satellites are operational.

The NDVI quantifies vegetation greenness by analyzing reflectance differences between the NIR
and Red bands, as formulated:

NIR — RED
NDVI = band 8 band 4 (1)
NIRpana 8 + REDpana 4
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NDVI reflects vegetation health and ecological changes [42] and has shown a positive correlation
with economic growth, particularly with GDP and population [16].

The NDWI distinguishes between water and land surfaces, as it is sensitive to liquid water content
in vegetation [43]. Its values range from below 0 (non-water areas) to above 0 (water areas) [44], with
the following formula:

Green — NIR
NDWI = band 3 band 8 (2)
Greenpgnaz + NIRpgna s

The NDBI identifies built-up or urban areas using the difference between Short-Wave Infrared
(SWIR) and NIR reflectance [45]. According to [46], it is formulated as:

SWIR — NIR
NDBI = band 11 band 8 (3)
SWIRband 11 + NIRband 8

Higher NDBI values indicate a greater likelihood of urban development [47].
2.6. MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a sensor onboard the Terra
satellite, operating under NASA’s Earth Observing System [48]. MODIS-Terra captures Land Surface
Temperature (LST) data both day and night, providing valuable insights into Earth’s thermal conditions.
The satellite orbits polarly at an altitude of 705 km, crossing the equator around 10:30 a.m. local time
[48].

LST data are particularly useful for analyzing the Urban Heat Island (UHI) phenomenon [22].
Increases in population density, industrial activity, and infrastructure development significantly
influence LST variations. Consequently, areas exhibiting higher LST values typically correspond to
regions with intense socio-economic activities and denser populations [22].

2.7. Sentinel-5P

The Sentinel-5 Precursor (Sentinel-5P) is an atmospheric monitoring satellite launched by the
European Space Agency (ESA) on October 13, 2017, designed to observe and measure various air
pollutants [49]. Sentinel-5P captures data on gases such as carbon monoxide (CO), nitrogen dioxide
(NO2), and sulfur dioxide (SO2), which are key indicators of air quality and human environmental
impact.

Carbon Monoxide (CO)

CO is a crucial atmospheric gas for assessing tropospheric chemistry and serves as a major pollutant
in urban environments (Copernicus Sentinel-5P, processed by ESA, 2021). It is primarily generated
from biomass burning, fossil fuel combustion, and atmospheric oxidation of methane and hydrocarbons,
with significant sources including motor vehicles, forest fires, power plants, and incinerators [50].

Nitrogen Dioxide (NO2)

NO: occurs in both the troposphere and stratosphere, produced by anthropogenic activities (e.g.,
fossil fuel and biomass combustion) and natural processes such as soil microbial reactions, lightning,
and wildfires (Copernicus Sentinel-5P, processed by ESA, 2021). It is one of the major air pollutants in
industrial and urban regions worldwide [51], [52]. Areas with high economic and industrial activity
generally exhibit elevated NO: concentrations.

Sulfur Dioxide (SO2)

SO: emissions are closely linked to population density and energy consumption [53]. High
population areas tend to produce more SO: pollutants. Key contributors include electricity generation,
manufacturing, and mining activities. As economic activity increases, greater energy demand for both
residential and industrial purposes results in higher SO- emissions into the atmosphere [54].
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2.8. The Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER)

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a satellite
jointly operated by the Japanese Ministry of Economy, Trade, and Industry (METI) and the U.S.
National Aeronautics and Space Administration (NASA). Launched in December 1999, ASTER carries
14 imaging sensors capable of capturing thermal infrared, shortwave infrared, and visible-near infrared
(VNIR) spectral data [55].

ASTER is notable for its ability to generate Digital Elevation Models (DEMs) three-dimensional
representations of the Earth’s surface that exclude above-ground objects such as vegetation and
buildings [56]. DEMs are widely used in geographic information systems (GIS) and serve as the
foundation for creating digital maps. Variations in elevation influence economic activity patterns: higher
elevations are typically dominated by agricultural activities, while lower-lying areas tend to support
more industrial development.

2.9. Point of Interest (POI)

Point of Interest (POI) refers to specific locations that attract frequent human activity, such as
restaurants, convenience stores, transportation hubs, parks, cafés, and tourist attractions, places that
provide value or utility to visitors [57]. With the widespread use of mobile devices, service providers
and technology companies increasingly analyze user mobility data with high geospatial-temporal
resolution to identify and map nearby POIs [57]. Common POI data sources include OpenStreetMap
(OSM), Google Maps, HERE Maps, and OneMap. In this study, POI data are obtained from
OpenStreetMap (OSM).

2.10. Robust Linear Regression

The modeling used is robust regression modeling that can address the problem of heteroskedasty,
and the image (oulier) on the data. Robust regression has many kinds of methods in terms of dealing
with the problems of various classical regression assumptions such as M-Regression, S-Regresion, and
MM- Regression. In this study, the MM-Regression method will be used because this method combines
between M- Regression and S-Regresion so that it is resistant and has a higher efficiency [58]. Robust
regression will not make the modeling error following the normal distribution because it has a different
estimate method based on the weighing of the data so that the outlier will give a small weight to the
parameter, but produce a level of accuracy generated better than the Ordinary Least Square method.
(OLS) [59]. The MM-Estimation procedure is a procedure by combining S-Estimation and M-
Estimation with the initial step of searching for the Estimator S so that a breakdown point is obtained to
minimize the residual in the estimator M which is used to set parameters on its regression so that its
efficiency is high and usually uses Tukey Bisquare. Based on [60], the equation form of the estimate
method Method of Moment (MM) is as follows.

n
Z pi' (u)Xij =0 “4)
i=1
n ~
Yo = Ef o XijB;
Doy =0 )
i=1 MM

where sy, is the standard deviation derived from S-estimation and p is Tukey's biweight function
formulated as follows:

(6)
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calculating the weighted value derived from Tukey Bisquare in the following equation.

u.
wi=[1-()?%u <c

¢ (7
w; =0, u >c

where u; = Sei and ¢ = 4.865

MM
The MM estimate method uses WLS (Weighted Least Square) to estimate the regression parameters in
the form of the following equation.

®)

where n is the value of the iteration performed and this iterative process is performed so that the

~

weighing value becomes convergent or f3; nr_ B; Mm% o0.

2.11. Data Transformation

The transformation used in this study is the Yeo-Johnson power transformation, which is a family
of Box-Cox transformations and can transform positive and negative data. The Yeo-Johnson power
transformation is well used in handling variables that do not have the same units in all ranges by making
the distribution of these variables like a Gaussian distribution or more normally distributed [61]. Data
transformation in this study is defined as follows:

(1+x)*-1
A% 0danx 20
log(1+x),A=0danx >0
@] ©)

(1-2x)%1
2—21
\—log(1—x),A=2danx <0

AF+F2danx <0

where x is the value of the variable or data input and A is the parameter value estimated using the
Maximum Likelihood technique with the assumption that these variables follow a normal distribution.
A linear relationship will be generated by families with parameter A = 1, then the transformation will
make the right tail of the distribution thicker or denser at 1 while widening the left tail of the distribution
to make the distribution right-skewed (skewed) towards a symmetrical distribution. In A > 1, the
distribution that is left skewed becomes a more symmetrical distribution as well.

2.12. Corelation Analysis and Selection of Important Variabels

The weighted sum model with the linear model is a weighting calculation to build the RSGI index
used in this study. Correlation analysis and selection of important variables need to be carried out to
ensure that the variables used can linearly represent the GRDP mapping in East Java Province. The
numerical relationship of integrated multi-source satellite imagery and POI data with regional GRDP
data at the sub-district level is carried out using correlation analysis. Correlation analysis was carried
out by using the correlation coefficient of Pearson and Spearman Rank with a p-value that showed
significant results at a significance level of 5% (a = 0.05). The following equation is a formula for
obtaining the value of the Pearson correlation coefficient.

nXixy — Qleix) Gleayi)
J Tax? = Byx)? [0 T 57 - Gy

‘l"xy =

(10)
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The value of 7y, is the correlation value between x; and y;, and n is the number of observations.
Meanwhile, the Spearman correlation value is calculated by changing the observed value to the ranking
value as in the following equation.

6 X, df
nd—n

(11)

=1

The value of the correlation coefficient is between 0 and 1, with the direction of the relationship
indicated by a positive or negative sign. Table 1 below shows the guidelines for interpreting the results
of the correlation coefficient used in this study [62].

Table 1. Correlation coffecient interpretation

Correlation Coefficient Interpretation
0.00 < |r] < 0.199 Very Weak
0.20 < |r] < 0.399 Weak

0.40 < |r| < 0.599 Moderate
0.60 < |r| < 0.799 Strong

0.80 < |r| < 1.000 Very Strong

Furthermore, a correlation significance test was performed to determine whether the correlation
coefficient obtained was statistically significant with a significance level of 5% (a = 0.05). The null
hypothesis used in this study is that there is no correlation or relationship between the two variables x;
and y;, compared with the alternative hypothesis, which assumes that there is a relationship between the
variables x; and y;. Based on the results of the correlation analysis, a statistically significant correlation
with the GRDP variable in East Java will be selected at the sub-district level and will then be used for
the construction of the RSGI. Thus, RSGI is made based on variables originating from satellite imagery
big data and other geospatial data, namely POI, which linearly has a significant relationship or
correlation to estimate GRDP in East Java Province down to the sub-district granular level.

2.13. Weighted Sum Model

The relative spatial GDP index (RSGI) is calculated by integrating satellite imagery and geospatial
variables that represent the economic activity in East Java Province by calculating the weighted sum
model. Several previous studies have used the index building method in their research, and some of
them have used geospatial data [40], [63]-[66]. The variables used in the index construction include
NTL Total, POI density, POI distance, NDVI, NDBI, NDWI, LST Daytime, LST Nighttime DEM, and
atmospheric pollutants (NO2z, SOz, CO). The following formula is used to build RSGI with a weighted
sum model:

RSGI = wy.NTL + wy. POlyensity + w3. POlyistance + wa. NDVI + ws. NDWI
+ W6NDBI + Wry. LSTdaytime‘l' W8-L5Tnighttime + Wg .DEM + Wio- co (12)
+ W11.N02 + W12.502

where p is the number of variables used in building the index, w is the weight used, and x; is the value
of each observation.

In this study, the RSGI is not a single model instead, it is constructed in four distinct variations
based on different weighting approach. They are equal weight sum (RSGI EWS), pearson correlation
(RSGI Pearson Weight), spearman correlation (RSGI Spearman Weight), and principal component
analysis loadings (RSGI PCA). First, an equal-weighted correlation method was applied, where all
variables were assigned identical weights, influenced only by the direction of their correlation with
GRDP. Second, weights were determined based on the Pearson correlation coefficient, using only
variables that showed significant correlations with GRDP in East Java. Third, the Spearman Rank
correlation coefficient was used, assigning higher weights to variables with stronger correlations,
representing GRDP more accurately. Fourth, weights were derived from Principal Component Analysis
(PCA), utilizing components that contributed cumulatively significant variance above 70%. Several
previous studies have also employed PCA for index construction in socio-economic research, who
developed the Regional Digital Development Index (RDDI) for Indonesia [67]; who created a Spatial
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Deprivation Index [68]; and who mapped the Relative Spatial Poverty Index (RSPI) in East Java,
showing a strong correlation with poverty levels [65].

2.14. Evalution

To find out how far the RSGI has come in estimating the GRDP of an area in East Java, an
evaluation measure is used. In this study, the evaluation used is a numerical and descriptive evaluation.
A descriptive evaluation measure is carried out by visually identifying the RSGI results obtained. Then,
numerical evaluation is used to numerically measure the accuracy of the results between the results
obtained and the ground truth results, where in this case the Pearson, Spearman Rank, RMSE, MAE,
MAPE, and R?correlation measures are used in the robust linear regression model at the sub-district
level. RMSE, MAE, MAPE, and R? values are calculated using the following formula:

n
1
RMSE = |- (9~ %) (13)
ni=1
n
1 A~
MAE =3 19 ¥ (14)
i=1n
1 5. — v
MAPE = —Z |u x 100% (15)
=
nh )2
R2 - 1 _ Zrll,—l(yl yl) ; (16)
X0 - i)

2.15. Analysis Method

This study utilizes multi-source satellite imagery and Point of Interest (POI) data from
OpenStreetMap (OSM), collected between January 1 and December 31, 2022. The satellite data were
collected and processed using the Google Earth Engine (GEE) platform. The variables used are
summarized in Table 1. The target variable, Gross Regional Domestic Product (GRDP) at constant
prices (ADHK), was chosen because it reflects the real economic growth rate. Since official GRDP data
are only available at the regency or city level, GRDP for the 666 sub-districts was estimated using the
Broad Area Ratio Estimation (BARE) method, a Small Area Estimation (SAE) technique that employs
population data as a proportional auxiliary variable.

The remote sensing data used in this study consist of multi-source satellite imagery and geospatial
big data. The satellite imagery includes Nighttime Light (NTL) intensity from NOAA-VIIRS;
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and
Normalized Difference Built-Up Index (NDBI) from Sentinel Multispectral Level 2A; Daytime and
Nighttime Land Surface Temperature (LST) from MODIS; Nitrogen Dioxide (NO-), Carbon Monoxide
(CO), and Sulfure Dioxide (SO:) from Sentinel-5P; as well as Digital Elevation Model (DEM) data from
ASTER. These variables serve as GRDP estimation indicators based on relevant literature, previous
studies, and image characteristics identified for East Java Province. The data were collected and
processed through Google Earth Engine (GEE), a cloud-based platform for managing and analyzing
Earth observation data, offering high-resolution, freely accessible imagery suitable for advanced
processing such as classification [69]. Meanwhile, POI data represent another form of geospatial big
data collected from OSM to complement the satellite-based analysis.

POI data describe the accessibility and activity level of an area. In this study, more than 17,000
POI points were identified across East Java Province, representing public facilities categorized into
sectors such as education, health, economy, and tourism. The highest satellite spatial resolution is
provided by Sentinel Multispectral Level 2A (10 m), while the lowest is Sentinel-5P (1113.2 m). To
address varying resolutions, GRDP mapping was constructed through the Relative Spatial GDP Index
(RSGI) with a resolution of 1 km x 1 km, in which each grid cell aggregates extracted features from all
variables at the sub-district level. All geospatial data sources used in this study, including POI data from
OSM and multisource remote sensing data underwent a validation and quality-checking procedure prior
to modeling. The POI dataset was refined through classification cleaning, removal of duplicated or
irrelevant entries, and spatial consistency checks to ensure its representativeness for economic activity.
In addition, the completeness and distribution of POI categories were examined to confirm that
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economically relevant facilities such as commercial, industrial, and service-related points were
adequately captured within each sub-district. Then, the satellite-derived variables were obtained from
products that include sensor calibration and atmospheric correction. Further validation was implicitly
ensured through the standardized pre-processing workflow applied to each satellite dataset, which
included cloud masking, median compositing, band selection, and pollution-product selection as
appropriate for each sensor. These procedures reduce atmospheric noise, remove anomalous
observations, and enhance the reliability of the extracted indicators for representing underlying
economic conditions. These steps ensured that each data source met the standards of methodological
appropriateness and was fit for use in constructing the RSGI. Additionally, official population data for
2022 from Statistics Indonesia (BPS) at the regency, municipality, and sub-district levels were used to
develop a GRDP estimation model using the SAE approach with the BARE method, an approach widely
applied in previous studies [70]. The GRDP at constant prices (ADHK) was employed as it reflects the
real rate of economic growth across sectors and over time [28].

This research proposes a method to overcome the limitations of conventional surveys for GRDP
calculation, which are often costly, slow, and lack granularity. The proposed solution utilizes multi-
source satellite imagery and OpenStreetMap (OSM) Point of Interest (POI) data to estimate GRDP at
the sub-district and district/city levels using a robust linear regression model. The overall research
framework is depicted in Figure 2.
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Figure 2. The research framework

The methodology is centered on the creation of a Relative Spatial GDP Index (RSGI). This process
begins with preprocessing and feature extraction from a diverse set of variables: NTL, NDVI, NDWI,
NDBI, NO,, CO, §0,, daytime and nighttime LST, POI Density, POI Distance, and DEM. These
features are aggregated into a 1 km x 1 km grid, transformed using the Yeo-Johnson method, and then
combined to construct the RSGI.

This index serves as the primary predictor in a robust linear regression model to estimate GRDP.
The performance and accuracy of the model are evaluated using several metrics: the correlation
coefficient, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and the coefficient of determination (). Finally, the GRDP estimation results are
presented as visualized maps to facilitate interpretation and support stakeholder decision-making.
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3. Results and Discussion
3.1. Correlation Analysis and Principal Component Analysis (PCA)

In this study, correlation analysis was applied to determine the direction and strength of the
relationship between geospatial variables and GRDP in East Java. Due to the limited availability of
official GRDP data at the 1 km x 1 km grid level, the analysis was conducted at the district or city level
(38 observations) and at the sub-district level (666 observations) using GRDP estimates derived from
the BARE method. To obtain more accurate insights, both Pearson and Spearman Rank correlation tests
were employed, with p-values used to assess statistical significance at a = 5% and correlation
coefficients indicating the direction and closeness of relationships. Following the interpretation
approach of [62], the Pearson test results revealed that all variables, except Nighttime LST, were
significantly correlated (p-value < 0.05) with GRDP at the sub-district level, while the Spearman Rank
test showed significant correlations (p-value < 0.05) for all variables. The results of the correlation
analysis are explained in Table 2.

Table 2. Results of correlation analysis of geospatial data variabels on GRDP in East Java

Pearson Correlation Test Spearman Rank Test

Variable Correlation Correlation Direction  Closeness gfgﬁfgg:ll}ty
Coefficient P ~value Coefficient p-value
NTL 0.6031 22x 106 0.5677 22x 106 Positive ﬁg‘ﬁa‘f‘e Significant
NDVI -0.3645 2.2x 10 -0.3019 1.8 x 1013 Negative Weak Significant
NDWI 0.3506 22x 101 0.3014 2.1x 1015 Positive Weak Significant
NDBI 0.3840 22x 10 0.326 2.2 x 1076 Positive Weak Significant
Day LST 0.2395 4.1x 1010 0.2699 1.5x 1012 Positive Weak Significant
Night LST 0.0627 1.1 x 10! 0.1116 4.0x 103 Positive Very Weak  Not Significant
CcO 0.2099 4.8x 108 0.2553 2.5x 101 Positive Weak Significant
NO:2 0.3753 2.2x 101 0.3389 2.2 x 1016 Positive Weak Significant
SO2 0.2845 7.8x 104 0.2947 9.04 x 105 Positive Weak Significant
POI Density 0.4974 2.2x 101 0.4288 2.2 x 1016 Positive Moderate Significant
POI Distance  -0.4017 2.2x 1016 -0.3853 2.2 x 1016 Negative Moderate Significant
DEM 0.2845 7.8x 10 0.2947 9.04x 10715 Positive Weak Significant

The PCA method was applied to reduce data dimensions and extract principal components that
capture the highest variance proportions from the original data. Based on [71], components contributing
a cumulative variance above 70% were selected. As shown in Table 3 and Figure 3, three components
were chosen, accounting for 78.003% of the total variance. Component 1 explains 38.821% of the
variance, dominated by high loadings from NTL, NDBI, NO:, and CO variables. Component 2
contributes 22.6% (cumulative 61.4252%), with SO. and DEM showing the highest loadings.
Component 3 adds 16.58%, bringing the cumulative variance to 78.003%, with dominant loadings from
NTL, NDVI, and NDWI. These selected components serve as weighted coefficients in constructing the
RSGI using the weighted sum method based on the obtained loading values.
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Table 3. Loadings value (eigen vector) of each main component of PCA

Variabl Component
arlable 1 2 3 4 5 6 71 8 9 10 11 12
NTL 0.308 0.100 0.708 -0.164 0.023 0.026 -0.114 0.800 0.454 -0.016 -0.027 0.0000
NDVI -0.171 -0.117 -0.555 -0.142 -0.222 0.065 0.143 0.155 -0.009 -0.015 0.727 1.8x10715
NDWI 0.137 0.130 0.580 0.172 0.257 0.039 -0.238 -0.094 -0.014 -0.050 0.678 1.6x 10715
NDBI 0.434 -0.049 0.084 -0.047 -0.045 0.502 0.677 -0.146 0.157 0.178 0.084 -3.4x10716
NO2 0.486 0.004 -0.136 0.553 -0.103 0.624 0.184 -0.062 0.016 -0.006 0.008 -1.2x 10716
CO 0.395 -0.244 -0.286 0.308 -0.150 0.506 -0.508 0.053 -0.245 -0.073 -0.020 4.3 x 10716
SO2 -0.017 0.621 -0.242 0.128 0.133 0.134 -0.009 -0.022 -0.002 0.041 -0.002 -7.1 x 10716
Day LST 0.291 -0.061 -0.229 -0.339 0.481 0.069 0.021 -0.209 0.050 -0.677 -0.015 3.1x 10715
Night LST 0.197 -0.163 -0.225 -0.237 0.503 0.146 -0.205-0.128 0.020 0.701 0.025 -3.6x 10715
POI Density ~ 0.288 0.208 0.138 -0.393 -0.143 0.142 0.097 0.222 -0.772 0.044 -0.002 2.3 x 10716
POI Distance -0.260 -0.224 -0.035 0.400 0.553 0.109 0.324 0.431 -0.327 -0.045 -0.029 5.4x 1071
DEM -0.017 0.621 -0.232 0.128 0.133 0.134 -0.009 -0.022 -0.002 0.041 -0.002 -1.2x 10~16
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Figure 3. Principal component selection and cumulative variance contribution

3.2. Calculation of the RSGI (Relative Spatial GDP Index)

To provide an initial understanding of the linear relationships among the key geospatial indicators
and the dependent variable, bivariate analyses were conducted, focusing on the three parameters
exhibiting the strongest association with the logarithm of GRDP (Ln GRPD), they are NTL, POI
Density, and POI Distance. The visual representation of these relationships is presented through scatter
plots in Figure 4. The first plot illustrates the moderately strong positive relationship between NTL Total
and Ln GRDP, indicate that areas with higher aggregate night-time light intensity consistently exhibit
higher economic output, affirming the known strong link between energy consumption, urbanization,
and economic activity.The second plot examines the association between POI Density and Ln GRDP,
also demonstrates a positive relationship and this finding reflects the principle that regions with a denser
concentration of economic activities, services, and infrastructure (as captured by the POI count per unit
area) tend to be associated with significantly higher GRDP values. Conversely, the third plot focuses on
POI Distance, which shows a clear negative association with Ln GRDP, and this pattern confirms the
expectation that greater average distance from economic centers is typically linked to a decrease in
overall economic activity. Overall, these initial visual patterns and correlation values, strongly reinforce
the relevance and potential of these geospatial indicators in effectively capturing and explaining the
observed variations in regional economic intensity across the study area.
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Figure 4. Correlation analysis between socioeconomic indicators (NTL, POI density, and POI
distance) and regional economic output in East Java districts

In building a linear regression model, selection is carried out using the Pearson correlation test with
a moderate to strong relationship. The results of the calculations are shown in Table 4, sorted from the
highest value. The Relative Spatial GDP Index (RSGI) was calculated using the weighted sum model
method, incorporating geospatial variables that showed significant correlations with GRDP in East Java
Province, namely NTL, NDVI, NDWI, NDBI, NO:, CO, SO, Daytime LST, Nighttime LST, POI
Density, POI Distance, and DEM. Two weighting strategies were applied: an equal weighted sum, which
assigns identical weights to all variables based solely on the direction of their significant correlations,
and four specific weighting approaches, equal weights based on correlation direction (W:), Pearson
correlation coefficients (W2:), Spearman Rank correlation coefficients (Ws), and PCA-based weights
derived from the first three components (W), which together account for 78% of cumulative variance.
The results of these weight calculations are presented in the following table.

Table 4. RSGI weight calculation results

Variable Equal Weight Pearson Weight Spearman Weight PCA Weight
NTL +1 0.6031 0.5677 1.116
NDVI -1 -0.3645 -0.3019 -0.843
NDWI +1 0.3506 0.3014 0.847
NDBI +1 0.3840 0.3260 0.469
NO2 +1 0.3753 0.3389 0.354
CcO +1 0.2099 0.2553 -0.135
SO2 +1 0.2845 0.2947 0.309
Daytime LST +1 0.2395 0.2699 0.001
Nighttime LST +1 Not Significant 0.1116 -0.191
POI Density +1 0.4974 0.4288 0.634
POI Distance -1 -0.4017 -0.3853 -0.519
DEM +1 0.2845 0.2947 0.372

Using four different weighting approaches, the weighting was applied to each 1 km % 1 km grid
cell to generate a relative spatial GDP (RSGI) map, as shown in Figure 5. The mapping process
employed min—max scaling to normalize RSGI values within a 0—1 range for easier interpretation. The
RSGI values were classified into six categories using the equal interval method, ensuring each class
spans an identical range, and the color gradient signifies an increasing index value. Very Low RSGI
areas, ranging from 0 to 0.17, are depicted in black, representing the lowest combined socio-economic,
demographic, and physical-geographic activity. This is followed by Low RSGI (0.17-0.33) in dark
purple, Moderate Low RSGI (0.33—0.5) in purple, and Moderate High RSGI (0.5-0.67) in dark orange.
The higher end of the spectrum includes High RSGI (0.67-0.83), shown in orange, and finally, Very
High RSGI (0.83-1), depicted in bright cream, which indicates the highest concentration of the
combined index variables.
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Figure 5. RSGI with equal weight sum method visualization

The resulting of four different weights for RSGI maps consistently indicate a stark spatial
dichotomy. Higher index values, predominantly characterized by orange and bright cream colors are
primarily concentrated in major urban centers and their expanding peri-urban hinterlands. The most
significant concentration of Very High RSGI forms a dense, continuous cluster centered around the
Gerbangkertosusila metropolitan region, encompassing the core area of Kota Surabaya and its
neighboring highly industrialized municipalities and Kota Malang. This expansive, high-value stretch
directly reflects the region's status as the uncontested economic and administrative engine of East Java,
fueled by high population density, intensive industrial activities, and commercial infrastructure
development. Furthermore, other key regional urban clusters, including Jember, Blitar, and Kota
Madiun, also exhibit prominent, localized pockets of high RSGI, radiating outward from their municipal
boundaries and serving as vital secondary nodes for regional socio-economic growth.

In sharp contrast, lower RSGI values, represented by dark purple and black colors, dominate the
less urbanized and peripheral areas, indicating significant disparities. The lowest RSGI values are
widespread across the central and eastern parts of Madura Island and are strongly correlated with
structural factors such as lower levels of industrial investment, limited access to advanced education and
healthcare, and a predominant reliance on traditional economic sectors like agriculture and fisheries.
The low values in the south are primarily linked to the difficult topography of the Southern Mountains,
which limits agricultural productivity, hinders transportation network development, and restricts high-
density economic and social infrastructure. Similarly, low RSGI values in several eastern mountainous
areas are associated with forest dominance, conservation land use, and lower population carrying
capacity. This spatial dichotomy underscores the geographically driven relationship between
urbanization, infrastructure development, and socio-economic conditions in East Java Province.

3.3. Robust Linear Regression Modelling

The study employed robust regression modeling to address issues of heteroscedasticity and outliers.
Two models were developed using GRDP (natural logarithm) from the SAE BARE method as the
dependent variable (Table 5). Model 1 included only the RSGI as the independent variable, while Model
2 added the population variable (natural logarithm), denoted as P.

In Model 1, four robust regression equations were estimated, each yielding significant results for
both the intercept and RSGI (p-value < 0.05). The model using RSGI with Pearson weighting achieved
an R?of 0.4755, indicating that RSGI explains approximately 47.55% of the GRDP variance. The
Breusch—Pagan test confirmed no heteroscedasticity (p-value > 0.05).
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In Model 2, both RSGI and population variables were significant (p-value < 0.05). The highest
Adjusted R? value of 0.7658 was obtained using the RSGI Pearson Weight combined with population,
meaning 76.58% of the GRDP variance was explained, while 23.42% remained unexplained. The
Breusch—Pagan test again indicated no heteroscedasticity (p-value > 0.05), and the Variance Inflation
Factor (VIF) values were all below 10, confirming the absence of multicollinearity [72].

Table 5. Robust Regression modelling results

Information RSGI Equal RSGI Pearson RSGI Spearman RSGI PCA
Weighted Weighted Weighted Weighted
Model 1 7.212 7.209 + 7.207 7.282
+0.116 RSGI 0.334 RSGI + 0.349 RSGI + 0.263 RSGI
Student-t Test (p-value)
Intercept 2x 10716 2x10716 2x10716 2x1071e
RSGI 2x 10716 2x10716 2x10716 2x10716
R? 0.4262 0.4755 0.4611 0.4392
Breusch Pagan Test (p-value) 0.2904 0.1587 0.1885 0.1819
Model 2 —4.071 -3.589 —-3.071 —4.271
+ 0.074 RSGI + 0.221 RSGI + 0.229 RSGI) + 0.1719 RSGI
1.035Ln (P) 0.991 Ln (P) 0.999 Ln (P) 1.056 Ln (P)
Student-t Test (p-value)
Intercept 2x10716 2.44x1071° 2.44x10715 2x10716
RSGI 2x10716 2x10716 2x1076 2x1076
Ln (Population) 2x10716 2x 10716 2x10716 2x10716
Adjusted R? 0.7445 0.7658 0.7565 0.7618
Breusch Pagan Test (p-value) 0.2237 0.1726 0.193 0.1032
VIF
RSGI 1.3236 1.3706 1.3599 1.3362
Ln (Population) 1.3236 1.3706 1.3599 1.3362

3.4. RSGI Numerical and Descriptive Evaluation Results

The first numerical evaluation aimed to assess the closeness between RSGI values and GRDP.
Since official GRDP data are only available at the district or city level, numerical evaluation at the 1 km
x 1 km grid level was not feasible. To achieve a more accurate assessment at a finer scale, RSGI values
were aggregated by sub-district, resulting in 666 observations. The relationship and degree of
association between RSGI and GRDP were then evaluated using Pearson and Spearman Rank
correlation analyses. The results of these analyses are presented in Table 6.

Table 6. RSGI correlation analysis with GRDP (BARE) in sub-district

Pearson Correlation Test

Spearman Rank Test

RSGI i : Direction  Closeness SFatl.stlcally
Correlation value Correlation value Significant
Coefficient P Coefficient P
I;,Seghfe‘g”“l 0.58429 22x10716  0.54944 22x107%6  Positive  Moderate  Significant
RSGI Pearson 16 _16 . Strong, ..
Weighted 0.61250 2.2x10 0.58458 2.2x10 Positive Moderate Significant
RSGI Spearman _16 _16 . Strong, ..
Weighted 0.60601 2.2x10 0.57782 2.2x10 Positive Moderate Significant
I;VSeZIhZSZA 0.59622 2.2x107  0.54167 2.2x1071  Positive = Moderate  Significant

Based on Table 6, all RSGI values show significant correlations in both Pearson and Spearman
Rank tests with sub-district level GRDP data. All correlations are positive, indicating that higher RSGI
values tend to align with higher GRDP values. According to the interpretation by [62], the Pearson
correlation results reveal that RSGI weighted by correlation coefficients exhibit strong relationships
with GRDP, while other RSGI variants show moderate correlations. Meanwhile, the Spearman Rank
test indicates moderate correlations across all RSGI values. The second numerical evaluation assessed

Page 204



Jurnal Aplikasi Statistika & Komputasi Statistik, vol.17(2), pp 189-210, December, 2025

the predictive accuracy of Model 1 and Model 2 using robust regression (Table 7). Model 1 achieved
the lowest RMSE, MAE, and MAPE values when using the RSGI Pearson Weighted variable as the
independent variable. In contrast, Model 2, which included population and RSGI PCA Weighted as
independent variables, yielded the smallest RMSE, MAE, and MAPE values 0.730, 0.482, and 7.000%,
respectively. Overall, Model 2 demonstrated better predictive performance than Model 1, making it the
most suitable model for estimating and predicting sub-district level GRDP in East Java Province.

Table 7. Robust Regression evaluation

Information RMSE MAE MAPE
Model 1

RSGI Equal Weighted 0.87611 0.63364 9.30421%
RSGI Pearson Weighted 0.85345 0.61129 9.00263%
RSGI Spearman Weighted 0.85883 0.61742 9.08007%
RSGI PCA Weighted 0.86731 0.62695 9.24068%
Model 2

RSGI Equal Weighted 0.74442 0.49498 7.19380%
RSGI Pearson Weighted 0.73358 0.47902 6.98911%
RSGI Spearman Weighted 0.73831 0.48622 7.07949%
RSGI PCA Weighted 0.73047 0.48185 7.00055%
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Figure 6. Map of GRDP estimated results in sub-district, East Java 2022 with Robust Regression.

The GRDP estimation results for each model using the robust regression method in Model 2 were
visualized to facilitate interpretation, as shown in Figure 6. The sub-district-level GRDP estimates were
mapped based on the best-performing model from the numerical evaluations. As illustrated in Figure 7,
the model using RSGI PCA and population as independent variables produced the most accurate results,
with RMSE, MAE, and MAPE values of 0.73047, 0.48185, and 7.00055%, respectively. Mapping was
performed by classifying the estimated GRDP values into five equal intervals at both sub-district and
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district/city levels. The sub-district-level results indicate that high GRDP estimates are concentrated in
urban centers such as Surabaya City, Malang City, Madiun City, and Kediri City, as well as in several
sub-districts of Malang and Banyuwangi Regencies. When aggregated to the district or city level, the
highest estimated GRDP values were found in Surabaya City, Sidoarjo Regency, Batu City, Malang
City. Overall, the results reveal that high GRDP estimates are concentrated in the northern and southern
regions of East Java Province, while lower estimates are predominantly found in the western areas.

Model 2 with PCA Weighted
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East Java, Indonesia
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Figure 7. The map of GRDP estimation in regency/municipality level

4. Conclusion

This study introduces a new approach to GRDP mapping in East Java with higher spatial
granularity, extending coverage to the sub-district level through the construction of a Relative Spatial
GDP Index (RSGI) ata 1 km x 1 km resolution. The method offers a cost-effective and timely update
mechanism to support SDG 8, promoting sustained economic growth and monitoring regional
development. The research integrates multi-source satellite imagery and Points of Interest (POI) data to
build and model the RSGI, estimate GRDP using robust regression, and visualize the resulting spatial
distribution.

The developed RSGI demonstrates a strong and significant correlation with sub-district-level
GRDP in East Java. Visual analysis indicates that areas with high RSGI values correspond to urban
regions with high accessibility, while low RSGI values are concentrated in spatially deprived or less
accessible areas. This finding confirms that higher RSGI values are associated with higher GRDP levels.

Two robust regression models were tested, Model 1 using only RSGI and Model 2 incorporating
both RSGI and population (log-transformed). Model 2 outperformed Model 1, yielding the best accuracy
metrics with RMSE = 0.73047, MAE = 0.48185, and MAPE = 7.00055%, and explaining 76.18% of
GRDP variance using the RSGI PCA Weighted variable and population as predictors. The results further
reveal that areas with high GRDP estimates are densely populated and well-connected, whereas low
GRDP estimates are observed in sparsely populated or undeveloped regions.
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