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Introduction/Main Objectives: GRDP serves as a fundamental indicator for 

assessing regional economic performance in Indonesia and plays a critical role 

in development planning. Background Problems: Conventional GRDP 

measurement in Indonesia relies on survey-based approaches, which are time-

consuming, costly, and provide limited spatial detail. Novelty: This study 

introduces a Relative Spatial GDP Index (RSGI) constructed from geospatial 

big data such as remote sensing and point of interest (POI) to estimate GRDP 

more granular in East Java. This approach represents the first geospatial data 

driven GRDP index developed at such fine spatial resolution in Indonesia. 

Research Methods: Four weighting schemes were applied to generate RSGI 

variations, which were then evaluated through regression modeling against 

official GRDP. They are equal weight, pearson correlation, spearman 

correlation, and principal component analysis (PCA). Finding/Results: The 

RSGI PCA produced the best performance (RMSE = 0.73047; MAE = 

0.48185; MAPE = 7.00%; R² = 0.7618). PCA weight outperformed other 

weight by capturing shared variance and generating objective weights that 

better represent spatial economic intensity. The RSGI PCA demonstrates a 

strong and significant correlation with GRDP at the sub-district level and 

provides a robust tool for fine-scale economic estimation.  
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1. Introduction 

Economic growth is one of the international development agendas included in the eighth point of 
the 2030 Sustainable Development Goals (SDGs). This agenda was also adopted by the Indonesian 
government in the National Medium-Term Development Plan (RPJMN) for the 2020–2024 period [1]. 
The expected economic growth target for the 2020–2024 period will increase by an average of 5.7–6.0 
percent per year [1]. National economic growth, according to data from the Central Bureau of Statistics 
(BPS) of the Republic of Indonesia as of February 2023, grew by 5.31% [2]. This achievement is still 
below the economic growth target to be achieved in the prepared RPJMN. From this description, the 
Gross Domestic Product (GDP) has a special place, which is the focus of the SDGs development. 
According to [2], GDP is an important indicator to determine economic conditions in a country over a 
certain period. 
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Economic development is a series of efforts to reduce unemployment, improve people's welfare, 
and minimize inequality in people's incomes. In measuring the progress or health of a country's 
economy, the Gross Domestic Product (GDP) is usually used as an important indicator both of current 
prices and based on constant prices (fixed prices). Meanwhile, to measure the economic progress or 
health of a province, district, or city, the Gross Regional Domestic Product (GRDP) is used as one of 
the indicators. GRDP is one indicator that can measure economic activity in a region. GRDP is prepared 
using three approaches, namely production, income, and expenditure, and is presented based on current 
prices and constant (real) prices. Although the components of presenting GRDP data are different for 
each calculation approach, conceptually, these three approaches will produce the same figure [3]. GRDP 
at current prices (nominal GRDP) is prepared based on prices prevailing during the calculation period 
and aims to look at the structure of the economy. Meanwhile, GRDP at constant (real) prices is prepared 
based on prices in the base year [2]. GRDP at current prices shows the ability of economic resources 
produced by a region. GRDP at constant prices can be used to show the rate of economic growth as a 
whole or for each category from year to year. GRDP per capita at current prices shows the value of 
GRDP per population, while GRDP per capita at constant prices is used to determine the real economic 
growth per capita population of a region [3]. 

GRDP using the expenditure approach is calculated based on all components of final demand, such 
as Final Household Consumption Expenditure, Final Consumption Expenditures for Non-Profit 
Institutions serving Households, Government Final Consumption Expenditure, Gross Domestic Fixed 
Capital Formation, Changes in Inventories, and Net Exports. In the final household consumption 
expenditure (PKRT) component, there are various data sources used to compile GRDP data, such as the 
National Socio-Economic Survey (SUSENAS). Within one year, SUSENAS data collection was carried 
out twice, namely in March and in September [4]. However, to carry out periodic monitoring in a shorter 
time and in more detail in terms of area or granularity, SUSENAS data cannot accommodate this, 
considering that SUSENAS is conducted every six months and the level of presentation is only at 
districts or cities. 

On the other hand, the calculation of GRDP uses a production approach using various data sources 
collected by BPS as well as compilation results from various other data sources. For example, in 
calculating GRDP for the agricultural, forestry, and fisheries components, one of the data sources used 
comes from the agricultural census, which is carried out once every ten years. Conventional survey data 
collection conducted in Indonesia for the calculation of GRDP has various weaknesses, such as 
SUSENAS, which is conducted every six months with a method that is limited in scope, costs a lot, and 
takes a long time. If monitoring in the short term, periodically, and in more detail in terms of SUSENAS 
data areas cannot provide it, a supporting data source with a faster and more efficient method is needed. 
In addition, similar problems can also be found in other GRDP-forming data sources, such as the 
SKLNP, which is carried out every year on a quarterly basis, as well as the agricultural census, which 
is carried out once every 10 years. 

Today, many studies have turned to alternatives data sources such as satellite imagery, which is the 
result of remote sensing, and other big data sources, such as Point of Interest (POI) from OpenStreetMap 
(OSM). The use of other big data sources has been carried out by [5], and it can be concluded that POI 
can effectively differentiate industrial and commercial areas and therefore has the potential to improve 
GRDP mapping. Previous research has shown that Visible Infrared Imaging Radiometer Suite (VIIRS) 
remote sensing data that captures Nighttime Light Intensity (NTL) has a positive correlation to GDP in 
a region [6]–[10]. In addition, Sentinel-2 Multispectral Instrument Level-2A, which captures the 
Normalized Difference Vegetation Index (NDVI), influences GDP and has a significant correlation 
[11]–[16]. Other composite indices, such as the Normalized Difference Water Index (NDWI), detect a 
reduction in water sources associated with GDP and population growth [17]. Then, the Normalized 
Difference Built-Up Index (NDBI) relates to the area of built-up land and the expansion of urban areas 
[18]. Sentinel-5P satellite imagery is designed to detect pollution emissions in an area such as CO, which 
is closely related to urban areas and economic growth [15], [19], and NO2 shows results that have a 
strong correlation with the value of GDP [20]. and SO2 emissions, along with NO2, are indicated to 
have a relationship to the intensity of energy use and economic growth [21]. Therefore, pollution 
emissions from CO, SO2, and NO2 can be used to determine the GDP value of an area because they 
have an association with economic growth. Images derived from MODIS can detect the magnitude of 
the ground surface temperature in an area during the day and night where the ground surface temperature 
will have a significant impact due to an increase in population, industrial activity, infrastructure 
development, and socio-economic activities [22]. The accurate use of elevation data, namely the Digital 
Elevation Model (DEM) derived from ASTER satellite imagery, can provide a scientific and socio-
economic point of view, and provide important things in geomorphology [23]. Another data source 
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originating from OpenStreetMap (OSM) can be utilized as a POI data source, which is a geospatial data 
source with geographic locations and descriptions based on categories and can effectively differentiate 
industrial and commercial areas, so that it has the potential to improve the precise GDP mapping of 
secondary and tertiary sectors [5]. Thus, the source of big data from satellite imagery and POI can be 
used as an alternative data source in data collection to estimate the GDP value of a region using relatively 
low costs, a short time frame, and continuous updating as needed. 

Furthermore, recent literature shows a growing shift toward leveraging diverse geospatial big data 
sources to strengthen the ability of models to map economic indicators at the sub-national scale. The 
previously dominant linear regression approaches are now considered less adequate due to their 
limitations in capturing non-linear relationships and inter-variable spatial interactions. This limitation 
has encouraged researchers to adopt more flexible Machine Learning (ML) methods, including Random 
Forest which have demonstrated notable improvements in GDP estimation, particularly when combining 
multisource remote sensing data with POI data for regional economic activity mapping in China [24]. 
Empirical evidence shows that the Random Forest model demonstrated strong predictive performance, 
achieving R² values of 0.95 for non-agricultural GDP. Alongside these developments, Deep Learning 
(DL) approaches, especially Convolutional Neural Networks (CNN) applied to high-resolution daytime 
satellite imagery and nightlights data have shown promise in identifying subtle spatial patterns linked 
to economic activity in China. Using an attention-enhanced VGG-16 architecture to extract image 
features, this approach produced a strong predictive result in predicting localized economic activity, 
reaching an R² value of 0.71 [25]. Incorporating remote sensing data has also been shown to substantially 
improve the ability for GRDP mapping, particularly within dense urban environments such as NTL from 
NPP-VIIRS dan built-up area extraction from Sentinel-2 images, where the predicting of GRDP shows 
the R² values to 0.82 in Shandong Province, China [26]. In addition, downscaling mapping techniques 
are increasingly adopted to redistribute official aggregate statistics into finer spatial units. Recent 
advances that combine NTL, POI, and multispectral features within multi-scale deep learning 
frameworks have further demonstrated the potential to generate GDP maps that are more stable, detailed, 
and representative of real economic conditions [27]. However, despite the rapid growth of geospatial 
and machine learning based approaches, most existing studies remain centered on improving prediction 
accuracy rather than constructing a spatially explicit economic index that can capture relative economic 
intensity at finer administrative levels, which is essential for evidence-based local policy and 
development planning. Therefore, this study develops a spatial GDP index that is crucial for capturing 
economic activity as the alternatives data to provides a more robust evidence base for development-
oriented policymaking. 

For the record, the alternatives data can only be used as support for SUSENAS data and cannot be 
used as the essence or core of data from the field obtained from SUSENAS. Provinces in Java dominate 
the performance and structure of the Indonesian economy spatially, with a contribution of 56.48% and 
a growth of 5.31% in 2022 [2]. East Java Province was chosen as the case study in this research because 
East Java Province is in second place after DKI Jakarta in terms of achieving the GRDP level in Java 
Island (BPS, 2022). To anticipate the weakness of GRDP data collection, which still uses conventional 
surveys, the contribution of this research is to implement the utilization of integrating remote sensing 
data and POI data as geospatial big data sources a combination that has not yet been explored in the 
Indonesian context to estimate GRDP at a smaller granular level down to the sub-district level and map 
it so that it can be easily interpreted. This granularity data is crucial because economic activities and 
development patterns often exhibit significant heterogeneity within a single district or city. Relying 
solely on aggregate district/city level data masks critical localized disparities in wealth, infrastructure 
needs, and the effectiveness of local policies, thereby limiting the government's ability to conduct 
targeted intervention, policy formulation, and balanced regional planning. Then, this research also offers 
the first empirical contribution of its kind in Indonesia, demonstrating the potential of geospatial big 
data to generate spatially detailed economic indicators beyond the limitations of conventional survey-
based GRDP statistics. 

2. Material and Methods 

2.1. Study Area 

This study was conducted in East Java Province, Indonesia, with 2022 as the reference year. East 

Java consists of 38 regencies and municipalities and 666 sub-districts, covering an area of approximately 

48,000 km², making it the largest province on Java Island. During the period 2020–2022, East Java 

recorded the second-highest Gross Regional Domestic Product (GRDP) at constant 2010 prices, after 
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DKI Jakarta, which motivated its selection as the study area. Moreover, the province exhibits substantial 

economic diversity across manufacturing, agro-industry, agriculture, services, and trade sectors, 

reflecting significant geographic and socio-cultural heterogeneity. Figure 1 presents the study area along 

with the official GRDP distribution of East Java Province in 2022. 

 

 

 

Figure 1. The official GRDP at constant prices mapping in East Java, Indonesia in 2022 

2.2. Big Data 

Big data has become a crucial concept in both industry and academia, encompassing various 
meanings. Big data as an information asset characterized by volume, velocity, and variety (the 3Vs), 
requiring specific technologies and analytical methods to derive value [29]. Its application is expanding 
rapidly across sectors such as industry, environment, and economic development. A specialized form, 
geospatial big data, refers to spatially referenced data, including land characteristics like land use [30]. 
This data generally appears in two formats: raster data, comprising images from sources like drones or 
satellites (e.g., Google Earth), and vector data, consisting of points, lines, and polygons obtained through 
platforms such as the OpenStreetMap API [30]. 

2.3. Satellite Imagery 

Satellite imagery refers to images captured by sensors mounted on satellites orbiting more than 400 
km above Earth’s surface [31]. These images result from remote sensing, a process in which sensors 
record energy emitted or reflected by objects on Earth [31]. Remote sensing involves collecting data 
from aircraft or satellites to measure and observe terrestrial features [32] and includes all techniques for 
capturing and processing electromagnetic recordings of the Earth’s surface [33]. Its ability to provide 
consistent, repetitive observations enables the monitoring of both short- and long-term environmental 
changes caused by natural or human activities [32]. 



Jurnal Aplikasi Statistika & Komputasi Statistik, vol.17(2), pp 189-210, December, 2025 

Page 193 

 

Remote sensing serves as a data source, a science, and a tool simultaneously. As a data source, it 
records physical properties of distant objects through emitted or reflected energy. As a science, it applies 
systematic processes such as measurement, data analysis, and interpretation. As a tool, it supports 
applications ranging from resource inventory to ecological assessment [34]. 

Remote sensing data are characterized by four key resolutions: 

1. Spatial Resolution, the smallest detectable object in imagery, represented by pixel size [31]. 
Higher resolution (smaller pixels) yields more detailed information [35]. Examples include 
very high-resolution imagery (Piades, 0.5 m), high (Iconos, 4 m), medium (Landsat, 15–30 m), 
and low (MODIS, 250–1000 m) [31]. 

2. Temporal Resolution, the frequency with which a satellite revisits the same location [31]. A 
shorter revisit time means higher temporal resolution; this depends on orbit type, sensor 
characteristics, and image swath width [35], [36]. 

3. Spectral Resolution, the sensor’s ability to distinguish between different wavelengths of the 
electromagnetic spectrum. Higher spectral resolution means more and narrower spectral bands 
[31]. 

4. Radiometric Resolution, the number of bits used to represent energy levels per pixel, 
determining brightness detail. Greater bit depth (e.g., 8-bit, 10-bit, 16-bit) indicates higher 
radiometric resolution [31], [37]. 

Satellite imagery is available from various sources such as VIIRS, Sentinel-2, MODIS, Sentinel-
5P, and ASTER. Subsequent analyses often utilize imagery from these satellites to explore the 
relationship between environmental observations and socio-economic indicators, including GRDP 
formation. 

2.4. Visible Infrared Imaging Radiometer Suite (VIIRS) 

The Suomi National Polar Partnership (SNPP) is a satellite operated jointly by NASA and NOAA, 
equipped with the Visible Infrared Imaging Radiometer Suite (VIIRS) as its primary imaging sensor. 
VIIRS is distinct among meteorological satellite sensors for its ability to capture short-wave infrared, 
near-infrared, and nighttime visible light emissions [38]. Research utilizing nighttime light data 
expanded following the release of annual stable light products from the DMPS-OLS by NOAA’s Earth 
Observation Group (EOG). Since the launch of VIIRS in 2011, EOG has provided improved nighttime 
light datasets featuring monthly updates, higher spatial resolution, and enhanced data quality [39]. These 
advancements make VIIRS data highly valuable for studies analyzing social and economic activities, 
particularly those related to economic growth [39][40]. 

2.5. Sentinel-2 Multispectral Instrument Level-2A 

Sentinel-2 is a European satellite equipped with the Multispectral Instrument (MSI) Level-2A, 
launched in 2015, designed for high-resolution optical imaging of the Earth’s surface. Unlike radar 
satellites that utilize Synthetic Aperture Radar Ground Range Detected (SAR-GRD) technology to 
capture images through cloud cover [41], Sentinel-2 focuses on multispectral observation. Compared to 
other medium-resolution satellites, Sentinel-2 offers superior spatial resolution, reaching 10 meters in 
the B4 (Red), B3 (Green), B2 (Blue), and B8 (Near-Infrared/NIR) bands. The satellite’s temporal 
resolution, its revisit frequency is 10 days for a single satellite and 5 days when two satellites operate 
together. 

Sentinel-2 is a multispectral imaging satellite mission that supports the Copernicus Land 
Monitoring program, focusing on observing vegetation, land cover, water bodies, inland waterways, and 
coastal areas. Its combination of sensing bands enables the development of various composite indices, 
including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index 
(NDWI), and Normalized Difference Built-Up Index (NDBI). Sentinel-2 offers high spatial resolution 
of up to 10 meters in the B4 (Red), B3 (Green), B2 (Blue), and B8 (Near Infrared/NIR) bands, with a 
temporal resolution of 10 days, or 5 days when two satellites are operational. 

The NDVI quantifies vegetation greenness by analyzing reflectance differences between the NIR 
and Red bands, as formulated: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅𝑏𝑎𝑛𝑑 8−𝑅𝐸𝐷𝑏𝑎𝑛𝑑 4

𝑁𝐼𝑅𝑏𝑎𝑛𝑑 8+𝑅𝐸𝐷𝑏𝑎𝑛𝑑 4
 (1) 
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NDVI reflects vegetation health and ecological changes [42] and has shown a positive correlation 
with economic growth, particularly with GDP and population [16]. 

The NDWI distinguishes between water and land surfaces, as it is sensitive to liquid water content 
in vegetation [43]. Its values range from below 0 (non-water areas) to above 0 (water areas) [44], with 
the following formula: 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛𝑏𝑎𝑛𝑑 3 −𝑁𝐼𝑅𝑏𝑎𝑛𝑑 8

𝐺𝑟𝑒𝑒𝑛𝑏𝑎𝑛𝑑 3 +𝑁𝐼𝑅𝑏𝑎𝑛𝑑 8
 (2) 

The NDBI identifies built-up or urban areas using the difference between Short-Wave Infrared 
(SWIR) and NIR reflectance [45]. According to [46], it is formulated as: 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅𝑏𝑎𝑛𝑑 11 −𝑁𝐼𝑅𝑏𝑎𝑛𝑑 8

𝑆𝑊𝐼𝑅𝑏𝑎𝑛𝑑 11 +𝑁𝐼𝑅𝑏𝑎𝑛𝑑 8
 (3) 

Higher NDBI values indicate a greater likelihood of urban development [47]. 

2.6. MODIS 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a sensor onboard the Terra 
satellite, operating under NASA’s Earth Observing System [48]. MODIS–Terra captures Land Surface 
Temperature (LST) data both day and night, providing valuable insights into Earth’s thermal conditions. 
The satellite orbits polarly at an altitude of 705 km, crossing the equator around 10:30 a.m. local time 
[48]. 

LST data are particularly useful for analyzing the Urban Heat Island (UHI) phenomenon [22]. 
Increases in population density, industrial activity, and infrastructure development significantly 
influence LST variations. Consequently, areas exhibiting higher LST values typically correspond to 
regions with intense socio-economic activities and denser populations [22]. 

2.7. Sentinel-5P 

The Sentinel-5 Precursor (Sentinel-5P) is an atmospheric monitoring satellite launched by the 
European Space Agency (ESA) on October 13, 2017, designed to observe and measure various air 
pollutants [49]. Sentinel-5P captures data on gases such as carbon monoxide (CO), nitrogen dioxide 
(NO₂), and sulfur dioxide (SO₂), which are key indicators of air quality and human environmental 
impact. 

 

Carbon Monoxide (CO) 

CO is a crucial atmospheric gas for assessing tropospheric chemistry and serves as a major pollutant 
in urban environments (Copernicus Sentinel-5P, processed by ESA, 2021). It is primarily generated 
from biomass burning, fossil fuel combustion, and atmospheric oxidation of methane and hydrocarbons, 
with significant sources including motor vehicles, forest fires, power plants, and incinerators [50]. 

 

Nitrogen Dioxide (NO₂) 
NO₂ occurs in both the troposphere and stratosphere, produced by anthropogenic activities (e.g., 

fossil fuel and biomass combustion) and natural processes such as soil microbial reactions, lightning, 
and wildfires (Copernicus Sentinel-5P, processed by ESA, 2021). It is one of the major air pollutants in 
industrial and urban regions worldwide [51], [52]. Areas with high economic and industrial activity 
generally exhibit elevated NO₂ concentrations. 

 

Sulfur Dioxide (SO₂) 

SO₂ emissions are closely linked to population density and energy consumption [53]. High 
population areas tend to produce more SO₂ pollutants. Key contributors include electricity generation, 
manufacturing, and mining activities. As economic activity increases, greater energy demand for both 
residential and industrial purposes results in higher SO₂ emissions into the atmosphere [54]. 
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2.8. The Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a satellite 
jointly operated by the Japanese Ministry of Economy, Trade, and Industry (METI) and the U.S. 
National Aeronautics and Space Administration (NASA). Launched in December 1999, ASTER carries 
14 imaging sensors capable of capturing thermal infrared, shortwave infrared, and visible-near infrared 
(VNIR) spectral data [55]. 

ASTER is notable for its ability to generate Digital Elevation Models (DEMs) three-dimensional 
representations of the Earth’s surface that exclude above-ground objects such as vegetation and 
buildings [56]. DEMs are widely used in geographic information systems (GIS) and serve as the 
foundation for creating digital maps. Variations in elevation influence economic activity patterns: higher 
elevations are typically dominated by agricultural activities, while lower-lying areas tend to support 
more industrial development. 

2.9. Point of Interest (POI) 

Point of Interest (POI) refers to specific locations that attract frequent human activity, such as 
restaurants, convenience stores, transportation hubs, parks, cafés, and tourist attractions, places that 
provide value or utility to visitors [57]. With the widespread use of mobile devices, service providers 
and technology companies increasingly analyze user mobility data with high geospatial-temporal 
resolution to identify and map nearby POIs [57]. Common POI data sources include OpenStreetMap 
(OSM), Google Maps, HERE Maps, and OneMap. In this study, POI data are obtained from 
OpenStreetMap (OSM). 

2.10. Robust Linear Regression 

The modeling used is robust regression modeling that can address the problem of heteroskedasty, 
and the image (oulier) on the data. Robust regression has many kinds of methods in terms of dealing 
with the problems of various classical regression assumptions such as M-Regression, S-Regresion, and 
MM- Regression. In this study, the MM-Regression method will be used because this method combines 
between M- Regression and S-Regresion so that it is resistant and has a higher efficiency [58]. Robust 
regression will not make the modeling error following the normal distribution because it has a different 
estimate method based on the weighing of the data so that the outlier will give a small weight to the 
parameter, but produce a level of accuracy generated better than the Ordinary Least Square method. 
(OLS) [59]. The MM-Estimation procedure is a procedure by combining S-Estimation and M-
Estimation with the initial step of searching for the Estimator S so that a breakdown point is obtained to 
minimize the residual in the estimator M which is used to set parameters on its regression so that its 
efficiency is high and usually uses Tukey Bisquare. Based on [60], the equation form of the estimate 
method Method of Moment (MM) is as follows. 

∑𝑝𝑖 ′(𝑢𝑖)𝑋𝑖𝑗 = 0

𝑛

𝑖=1

 (4) 

∑𝑝𝑖 ′(
𝑌𝑖 −∑ 𝑋𝑖𝑗 𝛽̂𝑗

𝑘
𝑗=0

𝑆𝑀𝑀
)𝑋𝑖𝑗 = 0

𝑛

𝑖=1

 (5) 

where 𝑠𝑀𝑀 is the standard deviation derived from S-estimation and ρ is Tukey's biweight function 
formulated as follows: 

 

𝜌(𝑢𝑖) =
𝑢𝑖
2

2
−

𝑢𝑖
4

2𝑐2
+

𝑢𝑖
6

6𝑐2
, −𝑐 ≤ 𝑢𝑖 ≤ 𝑐 dan 

𝜌(𝑢𝑖) =
𝑐2

6
, 𝑢𝑖 < −𝑐 atau 𝑢𝑖 > 𝑐 

 (6) 
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calculating the weighted value derived from Tukey Bisquare in the following equation. 

𝑤𝑖 = [1 − (
𝑢𝑖

𝑐
)2]2, 𝑢𝑖  ≤ 𝑐  

 (7) 

𝑤𝑖 = 0,  𝑢𝑖  > 𝑐  

where  𝑢𝑖 =
𝑒𝑖

S𝑀𝑀
 and 𝑐 = 4.865 

The MM estimate method uses WLS (Weighted Least Square) to estimate the regression parameters in 
the form of the following equation.  

𝛽̂𝑖
   (𝑛)

= (𝑋𝑇𝑊 (𝑛)𝑋) (𝑋𝑇𝑊 (𝑛)𝑌)  

   (8) 

where 𝑛 is the value of the iteration performed and this iterative process is performed so that the 
weighing value becomes convergent or 𝛽̂𝑖

   (𝑛+1)
− 𝛽̂𝑖

   (𝑛)
≈ 0. 

2.11. Data Transformation 

The transformation used in this study is the Yeo-Johnson power transformation, which is a family 
of Box-Cox transformations and can transform positive and negative data. The Yeo-Johnson power 
transformation is well used in handling variables that do not have the same units in all ranges by making 
the distribution of these variables like a Gaussian distribution or more normally distributed [61]. Data 
transformation in this study is defined as follows: 

𝑦𝜆(𝑥)

{
  
 

  
 
(1 + 𝑥)𝜆− 1

𝜆
, 𝜆 ≠ 0 𝑑𝑎𝑛 𝑥 ≥ 0  

𝑙𝑜𝑔(1 + 𝑥), 𝜆 = 0 𝑑𝑎𝑛 𝑥 ≥ 0 

−
(1 − 𝑥)2−𝜆

2 − 𝜆
, 𝜆 ≠ 2 𝑑𝑎𝑛 𝑥 < 0 

−𝑙𝑜𝑔(1 − 𝑥),𝜆 = 2 𝑑𝑎𝑛 𝑥 < 0 

 (9) 

where 𝑥 is the value of the variable or data input and λ is the parameter value estimated using the 
Maximum Likelihood technique with the assumption that these variables follow a normal distribution. 
A linear relationship will be generated by families with parameter 𝜆 = 1, then the transformation will 
make the right tail of the distribution thicker or denser at 1 while widening the left tail of the distribution 
to make the distribution right-skewed (skewed) towards a symmetrical distribution. In λ > 1, the 
distribution that is left skewed becomes a more symmetrical distribution as well. 

2.12. Corelation Analysis and Selection of Important Variabels 

The weighted sum model with the linear model is a weighting calculation to build the RSGI index 
used in this study. Correlation analysis and selection of important variables need to be carried out to 
ensure that the variables used can linearly represent the GRDP mapping in East Java Province. The 
numerical relationship of integrated multi-source satellite imagery and POI data with regional GRDP 
data at the sub-district level is carried out using correlation analysis. Correlation analysis was carried 
out by using the correlation coefficient of Pearson and Spearman Rank with a p-value that showed 
significant results at a significance level of 5% (𝛼 = 0.05). The following equation is a formula for 
obtaining the value of the Pearson correlation coefficient. 

𝑟𝑥𝑦 =
𝑛 ∑ 𝑥𝑖 𝑦𝑖

𝑛
𝑖=1   −  (∑ 𝑥𝑖

𝑛
𝑖=1  ) (∑ 𝑦𝑖

𝑛
𝑖=1  )

√(𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1  −  (∑ 𝑥𝑖
𝑛
𝑖=1  )2 √(𝑛 ∑ 𝑦𝑖

2𝑛
𝑖=1  − (∑ 𝑦𝑖

𝑛
𝑖=1  )2

 
(10) 
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The value of  𝑟𝑥𝑦  is the correlation value between 𝑥𝑖 and 𝑦𝑖 , and n is the number of observations. 
Meanwhile, the Spearman correlation value is calculated by changing the observed value to the ranking 
value as in the following equation. 

𝑟𝑠 = 1 −
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛3 −  𝑛
  (11) 

The value of the correlation coefficient is between 0 and 1, with the direction of the relationship 
indicated by a positive or negative sign. Table 1 below shows the guidelines for interpreting the results 
of the correlation coefficient used in this study [62]. 

 

Table 1. Correlation coffecient interpretation 

Correlation Coefficient Interpretation 

0.00 ≤  |𝑟|  ≤  0.199 Very Weak 

0.20 ≤  |𝑟|  ≤  0.399 Weak 

0.40 ≤  |𝑟|  ≤  0.599 Moderate 

0.60 ≤  |𝑟|  ≤  0.799 Strong 

0.80 ≤  |𝑟|  ≤  1.000 Very Strong 

 
Furthermore, a correlation significance test was performed to determine whether the correlation 

coefficient obtained was statistically significant with a significance level of 5% (𝛼 = 0.05). The null 
hypothesis used in this study is that there is no correlation or relationship between the two variables 𝑥𝑖  
and 𝑦𝑖 , compared with the alternative hypothesis, which assumes that there is a relationship between the 
variables 𝑥𝑖 and 𝑦𝑖 . Based on the results of the correlation analysis, a statistically significant correlation 
with the GRDP variable in East Java will be selected at the sub-district level and will then be used for 
the construction of the RSGI. Thus, RSGI is made based on variables originating from satellite imagery 
big data and other geospatial data, namely POI, which linearly has a significant relationship or 
correlation to estimate GRDP in East Java Province down to the sub-district granular level. 

2.13. Weighted Sum Model 

The relative spatial GDP index (RSGI) is calculated by integrating satellite imagery and geospatial 
variables that represent the economic activity in East Java Province by calculating the weighted sum 
model. Several previous studies have used the index building method in their research, and some of 
them have used geospatial data [40], [63]–[66]. The variables used in the index construction include 
NTL Total, POI density, POI distance, NDVI, NDBI, NDWI, LST Daytime, LST Nighttime DEM, and 
atmospheric pollutants (NO₂, SO₂, CO). The following formula is used to build RSGI with a weighted 
sum model: 

𝑅𝑆𝐺𝐼 =  𝑤1 . 𝑁𝑇𝐿 + 𝑤2. 𝑃𝑂𝐼𝑑𝑒𝑛𝑠𝑖𝑡𝑦 +𝑤3 . 𝑃𝑂𝐼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +𝑤4. 𝑁𝐷𝑉𝐼 + 𝑤5 . 𝑁𝐷𝑊𝐼

+𝑤6 . 𝑁𝐷𝐵𝐼 + 𝑤7 . 𝐿𝑆𝑇𝑑𝑎𝑦𝑡𝑖𝑚𝑒+ 𝑤8. 𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡𝑡𝑖𝑚𝑒 +𝑤9 . 𝐷𝐸𝑀 + 𝑤10 . 𝐶𝑂

+ 𝑤11 . 𝑁𝑂2 +𝑤12 . 𝑆𝑂2 

(12) 

where 𝑝 is the number of variables used in building the index, 𝑤 is the weight used, and 𝑥𝑖 is the value 
of each observation. 

In this study, the RSGI is not a single model instead, it is constructed in four distinct variations 
based on different weighting approach. They are equal weight sum (RSGI EWS), pearson correlation 
(RSGI Pearson Weight), spearman correlation (RSGI Spearman Weight), and principal component 
analysis loadings (RSGI PCA). First, an equal-weighted correlation method was applied, where all 
variables were assigned identical weights, influenced only by the direction of their correlation with 
GRDP. Second, weights were determined based on the Pearson correlation coefficient, using only 
variables that showed significant correlations with GRDP in East Java. Third, the Spearman Rank 
correlation coefficient was used, assigning higher weights to variables with stronger correlations, 
representing GRDP more accurately. Fourth, weights were derived from Principal Component Analysis 
(PCA), utilizing components that contributed cumulatively significant variance above 70%. Several 
previous studies have also employed PCA for index construction in socio-economic research, who 
developed the Regional Digital Development Index (RDDI) for Indonesia [67]; who created a Spatial 
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Deprivation Index [68]; and who mapped the Relative Spatial Poverty Index (RSPI) in East Java, 
showing a strong correlation with poverty levels [65]. 

2.14. Evalution 

To find out how far the RSGI has come in estimating the GRDP of an area in East Java, an 
evaluation measure is used. In this study, the evaluation used is a numerical and descriptive evaluation. 
A descriptive evaluation measure is carried out by visually identifying the RSGI results obtained. Then, 
numerical evaluation is used to numerically measure the accuracy of the results between the results 
obtained and the ground truth results, where in this case the Pearson, Spearman Rank, RMSE, MAE, 
MAPE, and 𝑅2correlation measures are used in the robust linear regression model at the sub-district 
level. RMSE, MAE, MAPE, and 𝑅2 values are calculated using the following formula: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (13) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦̂𝑖 − 𝑦𝑖 |

𝑛

𝑖=1

 (14) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑦̂𝑖 −  𝑦𝑖

 𝑦𝑖
|

𝑛

𝑖=1

 𝑥 100% (15) 

𝑅2 = 1 −
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖  −  𝑦𝑖)2
𝑛
𝑖=1

 (16) 

2.15. Analysis Method 

This study utilizes multi-source satellite imagery and Point of Interest (POI) data from 
OpenStreetMap (OSM), collected between January 1 and December 31, 2022. The satellite data were 
collected and processed using the Google Earth Engine (GEE) platform. The variables used are 
summarized in Table 1. The target variable, Gross Regional Domestic Product (GRDP) at constant 
prices (ADHK), was chosen because it reflects the real economic growth rate. Since official GRDP data 
are only available at the regency or city level, GRDP for the 666 sub-districts was estimated using the 
Broad Area Ratio Estimation (BARE) method, a Small Area Estimation (SAE) technique that employs 
population data as a proportional auxiliary variable. 

The remote sensing data used in this study consist of multi-source satellite imagery and geospatial 
big data. The satellite imagery includes Nighttime Light (NTL) intensity from NOAA-VIIRS; 
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and 
Normalized Difference Built-Up Index (NDBI) from Sentinel Multispectral Level 2A; Daytime and 
Nighttime Land Surface Temperature (LST) from MODIS; Nitrogen Dioxide (NO₂), Carbon Monoxide 
(CO), and Sulfure Dioxide (SO₂) from Sentinel-5P; as well as Digital Elevation Model (DEM) data from 
ASTER. These variables serve as GRDP estimation indicators based on relevant literature, previous 
studies, and image characteristics identified for East Java Province. The data were collected and 
processed through Google Earth Engine (GEE), a cloud-based platform for managing and analyzing 
Earth observation data, offering high-resolution, freely accessible imagery suitable for advanced 
processing such as classification [69]. Meanwhile, POI data represent another form of geospatial big 
data collected from OSM to complement the satellite-based analysis.  

POI data describe the accessibility and activity level of an area. In this study, more than 17,000 
POI points were identified across East Java Province, representing public facilities categorized into 
sectors such as education, health, economy, and tourism. The highest satellite spatial resolution is 
provided by Sentinel Multispectral Level 2A (10 m), while the lowest is Sentinel-5P (1113.2 m). To 
address varying resolutions, GRDP mapping was constructed through the Relative Spatial GDP Index 
(RSGI) with a resolution of 1 km × 1 km, in which each grid cell aggregates extracted features from all 
variables at the sub-district level. All geospatial data sources used in this study, including POI data from 
OSM and multisource remote sensing data underwent a validation and quality-checking procedure prior 
to modeling. The POI dataset was refined through classification cleaning, removal of duplicated or 
irrelevant entries, and spatial consistency checks to ensure its representativeness for economic activity. 
In addition, the completeness and distribution of POI categories were examined to confirm that 
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economically relevant facilities such as commercial, industrial, and service-related points were 
adequately captured within each sub-district. Then, the satellite-derived variables were obtained from 
products that include sensor calibration and atmospheric correction. Further validation was implicitly 
ensured through the standardized pre-processing workflow applied to each satellite dataset, which 
included cloud masking, median compositing, band selection, and pollution-product selection as 
appropriate for each sensor. These procedures reduce atmospheric noise, remove anomalous 
observations, and enhance the reliability of the extracted indicators for representing underlying 
economic conditions. These steps ensured that each data source met the standards of methodological 
appropriateness and was fit for use in constructing the RSGI. Additionally, official population data for 
2022 from Statistics Indonesia (BPS) at the regency, municipality, and sub-district levels were used to 
develop a GRDP estimation model using the SAE approach with the BARE method, an approach widely 
applied in previous studies [70]. The GRDP at constant prices (ADHK) was employed as it reflects the 
real rate of economic growth across sectors and over time [28]. 

This research proposes a method to overcome the limitations of conventional surveys for GRDP 
calculation, which are often costly, slow, and lack granularity. The proposed solution utilizes multi-
source satellite imagery and OpenStreetMap (OSM) Point of Interest (POI) data to estimate GRDP at 
the sub-district and district/city levels using a robust linear regression model. The overall research 
framework is depicted in Figure 2. 

 

 

Figure 2. The research framework 

The methodology is centered on the creation of a Relative Spatial GDP Index (RSGI). This process 
begins with preprocessing and feature extraction from a diverse set of variables: NTL, NDVI, NDWI, 
NDBI, 𝑁𝑂2 , CO, 𝑆𝑂2, daytime and nighttime LST, POI Density, POI Distance, and DEM. These 
features are aggregated into a 1 km x 1 km grid, transformed using the Yeo-Johnson method, and then 
combined to construct the RSGI. 

This index serves as the primary predictor in a robust linear regression model to estimate GRDP. 
The performance and accuracy of the model are evaluated using several metrics: the correlation 
coefficient, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage 
Error (MAPE), and the coefficient of determination (). Finally, the GRDP estimation results are 
presented as visualized maps to facilitate interpretation and support stakeholder decision-making. 
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3. Results and Discussion 

3.1. Correlation Analysis and Principal Component Analysis (PCA) 

In this study, correlation analysis was applied to determine the direction and strength of the 
relationship between geospatial variables and GRDP in East Java. Due to the limited availability of 
official GRDP data at the 1 km × 1 km grid level, the analysis was conducted at the district or city level 
(38 observations) and at the sub-district level (666 observations) using GRDP estimates derived from 
the BARE method. To obtain more accurate insights, both Pearson and Spearman Rank correlation tests 
were employed, with p-values used to assess statistical significance at α = 5% and correlation 
coefficients indicating the direction and closeness of relationships. Following the interpretation 
approach of [62], the Pearson test results revealed that all variables, except Nighttime LST, were 
significantly correlated (p-value < 0.05) with GRDP at the sub-district level, while the Spearman Rank 
test showed significant correlations (p-value < 0.05) for all variables. The results of the correlation 
analysis are explained in Table 2. 

 

Table 2. Results of correlation analysis of geospatial data variabels on GRDP in East Java 

Variable 
Pearson Correlation Test Spearman Rank Test  

Direction 

 
Closeness Statistically 

Significant Correlation 

Coefficient p-value Correlation 

Coefficient p-value 

NTL  0.6031 2.2 x 10-16  0.5677 2.2 x 10-16 Positive Strong & 

Moderate Significant 

NDVI -0.3645 2.2 x 10-16 -0.3019 1.8 x 10-15 Negative Weak Significant 

NDWI  0.3506 2.2 x 10-16  0.3014 2.1 x 10-15 Positive Weak Significant 

NDBI  0.3840 2.2 x 10-16  0.326 2.2 x 10-16 Positive Weak Significant 

Day LST  0.2395 4.1 x 10-10  0.2699 1.5 x 10-12 Positive Weak Significant 

Night LST  0.0627 1.1 x 10-1   0.1116 4.0 x 10-3  Positive Very Weak Not Significant 

CO  0.2099 4.8 x 10-8  0.2553 2.5 x 10-11 Positive Weak Significant 

NO2  0.3753 2.2 x 10-16  0.3389 2.2 x 10-16 Positive Weak Significant 

SO2  0.2845 7.8 x 10-14  0.2947 9.04 x 10-15 Positive Weak Significant 

POI Density  0.4974 2.2 x 10-16  0.4288 2.2 x 10-16 Positive Moderate Significant 

POI Distance -0.4017 2.2 x 10-16 -0.3853 2.2 x 10-16 Negative Moderate Significant 

DEM  0.2845 7.8 x 10-14  0.2947 9.04x 10-15  Positive Weak Significant  

 

The PCA method was applied to reduce data dimensions and extract principal components that 
capture the highest variance proportions from the original data. Based on [71], components contributing 
a cumulative variance above 70% were selected. As shown in Table 3 and Figure 3, three components 
were chosen, accounting for 78.003% of the total variance. Component 1 explains 38.821% of the 
variance, dominated by high loadings from NTL, NDBI, NO₂, and CO variables. Component 2 
contributes 22.6% (cumulative 61.4252%), with SO₂ and DEM showing the highest loadings. 
Component 3 adds 16.58%, bringing the cumulative variance to 78.003%, with dominant loadings from 
NTL, NDVI, and NDWI. These selected components serve as weighted coefficients in constructing the 
RSGI using the weighted sum method based on the obtained loading values. 
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Table 3. Loadings value (eigen vector) of each main component of PCA 

Variable 
Component 

1 2 3 4 5 6 7 8 9 10 11 12 

NTL  0.308  0.100  0.708 -0.164  0.023  0.026  -0.114  0.800  0.454 -0.016 -0.027    0.0000 

NDVI -0.171 -0.117 -0.555 -0.142 -0.222  0.065   0.143  0.155 -0.009 -0.015  0.727  1.8 x 10−15 

NDWI  0.137  0.130  0.580  0.172  0.257  0.039  -0.238 -0.094 -0.014 -0.050  0.678  1.6 x 10−15 

NDBI  0.434 -0.049  0.084 -0.047 -0.045  0.502   0.677 -0.146  0.157  0.178  0.084 -3.4 x 10−16  

NO2  0.486  0.004 -0.136  0.553 -0.103  0.624   0.184 -0.062  0.016 -0.006  0.008 -1.2 x 10−16 

CO  0.395 -0.244 -0.286  0.308 -0.150  0.506  -0.508  0.053 -0.245 -0.073 -0.020   4.3 x  10−16 

SO2 -0.017  0.621 -0.242  0.128  0.133  0.134  -0.009 -0.022 -0.002  0.041 -0.002 -7.1 x 10−16 

Day LST  0.291 -0.061 -0.229 -0.339  0.481  0.069   0.021 -0.209  0.050 -0.677 -0.015  3.1 x 10−15 

Night LST  0.197 -0.163 -0.225 -0.237  0.503  0.146  -0.205 -0.128  0.020  0.701  0.025 -3.6 x 10−15 

POI Density  0.288  0.208  0.138 -0.393 -0.143  0.142   0.097  0.222 -0.772  0.044 -0.002  2.3 x 10−16 

POI Distance -0.260 -0.224 -0.035  0.400  0.553  0.109   0.324  0.431 -0.327 -0.045 -0.029  5.4 x 10−16 

DEM -0.017  0.621 -0.232  0.128  0.133  0.134  -0.009 -0.022 -0.002  0.041 -0.002 -1.2 x 10−16 

 

 

Figure 3. Principal component selection and cumulative variance contribution 

3.2. Calculation of the RSGI (Relative Spatial GDP Index) 

To provide an initial understanding of the linear relationships among the key geospatial indicators 
and the dependent variable, bivariate analyses were conducted, focusing on the three parameters 
exhibiting the strongest association with the logarithm of GRDP (Ln GRPD), they are NTL, POI 
Density, and POI Distance. The visual representation of these relationships is presented through scatter 
plots in Figure 4. The first plot illustrates the moderately strong positive relationship between NTL Total 
and Ln GRDP, indicate that areas with higher aggregate night-time light intensity consistently exhibit 
higher economic output, affirming the known strong link between energy consumption, urbanization, 
and economic activity.The second plot examines the association between POI Density and Ln GRDP, 
also demonstrates a positive relationship and this finding reflects the principle that regions with a denser 
concentration of economic activities, services, and infrastructure (as captured by the POI count per unit 
area) tend to be associated with significantly higher GRDP values. Conversely, the third plot focuses on 
POI Distance, which shows a clear negative association with Ln GRDP, and this pattern confirms the 
expectation that greater average distance from economic centers is typically linked to a decrease in 
overall economic activity. Overall, these initial visual patterns and correlation values, strongly reinforce 
the relevance and potential of these geospatial indicators in effectively capturing and explaining the 
observed variations in regional economic intensity across the study area. 
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Figure 4. Correlation analysis between socioeconomic indicators (NTL, POI density, and POI 
distance) and regional economic output in East Java districts 

In building a linear regression model, selection is carried out using the Pearson correlation test with 
a moderate to strong relationship. The results of the calculations are shown in Table 4, sorted from the 
highest value. The Relative Spatial GDP Index (RSGI) was calculated using the weighted sum model 
method, incorporating geospatial variables that showed significant correlations with GRDP in East Java 
Province, namely NTL, NDVI, NDWI, NDBI, NO₂, CO, SO₂, Daytime LST, Nighttime LST, POI 
Density, POI Distance, and DEM. Two weighting strategies were applied: an equal weighted sum, which 
assigns identical weights to all variables based solely on the direction of their significant correlations, 
and four specific weighting approaches, equal weights based on correlation direction (W₁), Pearson 
correlation coefficients (W₂), Spearman Rank correlation coefficients (W₃), and PCA-based weights 
derived from the first three components (W₄), which together account for 78% of cumulative variance. 
The results of these weight calculations are presented in the following table. 

 

Table 4. RSGI weight calculation results 

Variable Equal Weight Pearson Weight Spearman Weight PCA Weight 

NTL +1 0.6031 0.5677 1.116 

NDVI -1 -0.3645 -0.3019 -0.843 

NDWI +1 0.3506 0.3014 0.847 

NDBI +1 0.3840 0.3260 0.469 

NO2 +1 0.3753 0.3389 0.354 

CO +1 0.2099 0.2553 -0.135 

SO2 +1 0.2845 0.2947 0.309 

Daytime LST +1 0.2395 0.2699 0.001 

Nighttime LST +1 Not Significant 0.1116 -0.191 

POI Density +1 0.4974 0.4288 0.634 

POI Distance -1 -0.4017 -0.3853 -0.519 

DEM +1 0.2845 0.2947 0.372 

 
Using four different weighting approaches, the weighting was applied to each 1 km × 1 km grid 

cell to generate a relative spatial GDP (RSGI) map, as shown in Figure 5. The mapping process 
employed min–max scaling to normalize RSGI values within a 0–1 range for easier interpretation. The 
RSGI values were classified into six categories using the equal interval method, ensuring each class 
spans an identical range, and the color gradient signifies an increasing index value. Very Low RSGI 
areas, ranging from 0 to 0.17, are depicted in black, representing the lowest combined socio-economic, 
demographic, and physical-geographic activity. This is followed by Low RSGI (0.17–0.33) in dark 
purple, Moderate Low RSGI (0.33–0.5) in purple, and Moderate High RSGI (0.5–0.67) in dark orange. 
The higher end of the spectrum includes High RSGI (0.67–0.83), shown in orange, and finally, Very 
High RSGI (0.83–1), depicted in bright cream, which indicates the highest concentration of the 
combined index variables.  
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Figure 5. RSGI with equal weight sum method visualization 

The resulting of four different weights for RSGI maps consistently indicate a stark spatial 
dichotomy. Higher index values, predominantly characterized by orange and bright cream colors are 
primarily concentrated in major urban centers and their expanding peri-urban hinterlands. The most 
significant concentration of Very High RSGI forms a dense, continuous cluster centered around the 
Gerbangkertosusila metropolitan region, encompassing the core area of Kota Surabaya and its 
neighboring highly industrialized municipalities and Kota Malang. This expansive, high-value stretch 
directly reflects the region's status as the uncontested economic and administrative engine of East Java, 
fueled by high population density, intensive industrial activities, and commercial infrastructure 
development. Furthermore, other key regional urban clusters, including Jember, Blitar, and Kota 
Madiun, also exhibit prominent, localized pockets of high RSGI, radiating outward from their municipal 
boundaries and serving as vital secondary nodes for regional socio-economic growth. 

In sharp contrast, lower RSGI values, represented by dark purple and black colors, dominate the 
less urbanized and peripheral areas, indicating significant disparities. The lowest RSGI values are 
widespread across the central and eastern parts of Madura Island and are strongly correlated with 
structural factors such as lower levels of industrial investment, limited access to advanced education and 
healthcare, and a predominant reliance on traditional economic sectors like agriculture and fisheries. 
The low values in the south are primarily linked to the difficult topography of the Southern Mountains, 
which limits agricultural productivity, hinders transportation network development, and restricts high-
density economic and social infrastructure. Similarly, low RSGI values in several eastern mountainous 
areas are associated with forest dominance, conservation land use, and lower population carrying 
capacity. This spatial dichotomy underscores the geographically driven relationship between 
urbanization, infrastructure development, and socio-economic conditions in East Java Province. 

3.3. Robust Linear Regression Modelling 

The study employed robust regression modeling to address issues of heteroscedasticity and outliers. 
Two models were developed using GRDP (natural logarithm) from the SAE BARE method as the 
dependent variable (Table 5). Model 1 included only the RSGI as the independent variable, while Model 
2 added the population variable (natural logarithm), denoted as P. 

In Model 1, four robust regression equations were estimated, each yielding significant results for 
both the intercept and RSGI (p-value < 0.05). The model using RSGI with Pearson weighting achieved 
an 𝑅2of 0.4755, indicating that RSGI explains approximately 47.55% of the GRDP variance. The 
Breusch–Pagan test confirmed no heteroscedasticity (p-value > 0.05).  
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In Model 2, both RSGI and population variables were significant (p-value < 0.05). The highest 
Adjusted 𝑅2 value of 0.7658 was obtained using the RSGI Pearson Weight combined with population, 
meaning 76.58% of the GRDP variance was explained, while 23.42% remained unexplained. The 
Breusch–Pagan test again indicated no heteroscedasticity (p-value > 0.05), and the Variance Inflation 
Factor (VIF) values were all below 10, confirming the absence of multicollinearity [72]. 

 

Table 5. Robust Regression modelling results 

Information RSGI Equal  

Weighted 
RSGI Pearson  

Weighted 
RSGI Spearman  

Weighted 
RSGI PCA  

Weighted 

Model 1 7.212
+ 0.116 𝑅𝑆𝐺𝐼 

7.209 + 
0.334 𝑅𝑆𝐺𝐼 

7.207
+ 0.349 𝑅𝑆𝐺𝐼 

7.282
+ 0.263 𝑅𝑆𝐺𝐼 

Student-t Test (p-value)     
                  Intercept    2 x 10−16 2 x 10−16 2 x 10−16 2 x 10−16 
                  RSGI    2 x 10−16 2 x 10−16 2 x 10−16 2 x 10−16 
R2    0.4262 0.4755 0.4611 0.4392 
Breusch Pagan Test (p-value)    0.2904 0.1587 0.1885 0.1819 

Model 2 −4.071
+ 0.074 𝑅𝑆𝐺𝐼 

−3.589
+ 0.221 𝑅𝑆𝐺𝐼 

−3.071
+ 0.229 𝑅𝑆𝐺𝐼) 

−4.271
+ 0.1719 𝑅𝑆𝐺𝐼 

 1.035 𝐿𝑛 (𝑃) 0.991 𝐿𝑛 (𝑃) 0.999 𝐿𝑛 (𝑃) 1.056 𝐿𝑛 (𝑃) 
Student-t Test (p-value)     

Intercept     2 x 10−16    2.44 x 10−15 2.44 x 10−15  2 x 10−16 
                   RSGI     2 x 10−16    2 x 10−16 2 x 10−16  2 x 10−16 
                     Ln (Population)      2 x 10−16    2 x 10−16 2 x 10−16  2 x 10−16 
Adjusted R2     0.7445    0.7658 0.7565  0.7618 
Breusch Pagan Test (p-value)     0.2237    0.1726 0.193  0.1032 
VIF     
RSGI     1.3236    1.3706  1.3599  1.3362 
Ln (Population)     1.3236    1.3706  1.3599  1.3362 

3.4. RSGI Numerical and Descriptive Evaluation Results 

The first numerical evaluation aimed to assess the closeness between RSGI values and GRDP. 
Since official GRDP data are only available at the district or city level, numerical evaluation at the 1 km 
× 1 km grid level was not feasible. To achieve a more accurate assessment at a finer scale, RSGI values 
were aggregated by sub-district, resulting in 666 observations. The relationship and degree of 
association between RSGI and GRDP were then evaluated using Pearson and Spearman Rank 
correlation analyses. The results of these analyses are presented in Table 6. 

 

Table 6. RSGI correlation analysis with GRDP (BARE) in sub-district 

RSGI 

Pearson Correlation Test Spearman Rank Test 

Direction Closeness 
Statistically 

Significant Correlation 

Coefficient 
p-value 

Correlation 

Coefficient 
p-value 

RSGI Equal 

Weighted 
0.58429 2.2 x 10−16 0.54944 2.2 x 10−16 Positive Moderate Significant 

RSGI Pearson 

Weighted 
0.61250 2.2 x 10−16 0.58458 2.2 x 10−16 Positive 

Strong, 

Moderate 
Significant 

RSGI Spearman 
Weighted 

0.60601 2.2 x 10−16 0.57782 2.2 x 10−16 Positive 
Strong, 
Moderate 

Significant 

RSGI PCA 

Weighted 
0.59622 2.2 x 10−16 0.54167 2.2 x 10−16 Positive Moderate Significant 

 
Based on Table 6, all RSGI values show significant correlations in both Pearson and Spearman 

Rank tests with sub-district level GRDP data. All correlations are positive, indicating that higher RSGI 
values tend to align with higher GRDP values. According to the interpretation by [62], the Pearson 
correlation results reveal that RSGI weighted by correlation coefficients exhibit strong relationships 
with GRDP, while other RSGI variants show moderate correlations. Meanwhile, the Spearman Rank 
test indicates moderate correlations across all RSGI values. The second numerical evaluation assessed 
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the predictive accuracy of Model 1 and Model 2 using robust regression (Table 7). Model 1 achieved 
the lowest RMSE, MAE, and MAPE values when using the RSGI Pearson Weighted variable as the 
independent variable. In contrast, Model 2, which included population and RSGI PCA Weighted as 
independent variables, yielded the smallest RMSE, MAE, and MAPE values 0.730, 0.482, and 7.000%, 
respectively. Overall, Model 2 demonstrated better predictive performance than Model 1, making it the 
most suitable model for estimating and predicting sub-district level GRDP in East Java Province. 

 

Table 7. Robust Regression evaluation 

Information RMSE MAE MAPE 

Model 1    

RSGI Equal Weighted 0.87611 0.63364 9.30421% 

RSGI Pearson Weighted 0.85345 0.61129 9.00263% 

RSGI Spearman Weighted 0.85883 0.61742 9.08007% 

RSGI PCA Weighted 0.86731 0.62695 9.24068% 

Model 2    

RSGI Equal Weighted 0.74442 0.49498 7.19380% 

RSGI Pearson Weighted 0.73358 0.47902 6.98911% 

RSGI Spearman Weighted 0.73831 0.48622 7.07949% 

RSGI PCA Weighted 0.73047 0.48185 7.00055% 

 

  

  

Figure 6. Map of GRDP estimated results in sub-district, East Java 2022 with Robust Regression. 

The GRDP estimation results for each model using the robust regression method in Model 2 were 
visualized to facilitate interpretation, as shown in Figure 6. The sub-district-level GRDP estimates were 
mapped based on the best-performing model from the numerical evaluations. As illustrated in Figure 7, 
the model using RSGI PCA and population as independent variables produced the most accurate results, 
with RMSE, MAE, and MAPE values of 0.73047, 0.48185, and 7.00055%, respectively. Mapping was 
performed by classifying the estimated GRDP values into five equal intervals at both sub-district and 
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district/city levels. The sub-district-level results indicate that high GRDP estimates are concentrated in 
urban centers such as Surabaya City, Malang City, Madiun City, and Kediri City, as well as in several 
sub-districts of Malang and Banyuwangi Regencies. When aggregated to the district or city level, the 
highest estimated GRDP values were found in Surabaya City, Sidoarjo Regency, Batu City, Malang 
City. Overall, the results reveal that high GRDP estimates are concentrated in the northern and southern 
regions of East Java Province, while lower estimates are predominantly found in the western areas. 

 

 

 

Figure 7. The map of GRDP estimation in regency/municipality level 

4. Conclusion 

This study introduces a new approach to GRDP mapping in East Java with higher spatial 
granularity, extending coverage to the sub-district level through the construction of a Relative Spatial 
GDP Index (RSGI) at a 1 km × 1 km resolution. The method offers a cost-effective and timely update 
mechanism to support SDG 8, promoting sustained economic growth and monitoring regional 
development. The research integrates multi-source satellite imagery and Points of Interest (POI) data to 
build and model the RSGI, estimate GRDP using robust regression, and visualize the resulting spatial 
distribution. 

The developed RSGI demonstrates a strong and significant correlation with sub-district-level 
GRDP in East Java. Visual analysis indicates that areas with high RSGI values correspond to urban 
regions with high accessibility, while low RSGI values are concentrated in spatially deprived or less 
accessible areas. This finding confirms that higher RSGI values are associated with higher GRDP levels. 

Two robust regression models were tested, Model 1 using only RSGI and Model 2 incorporating 
both RSGI and population (log-transformed). Model 2 outperformed Model 1, yielding the best accuracy 
metrics with RMSE = 0.73047, MAE = 0.48185, and MAPE = 7.00055%, and explaining 76.18% of 
GRDP variance using the RSGI PCA Weighted variable and population as predictors. The results further 
reveal that areas with high GRDP estimates are densely populated and well-connected, whereas low 
GRDP estimates are observed in sparsely populated or undeveloped regions.  
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