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Introduction/Main Objectives: This study aims to develop a 1 km × 1 km 

level estimation model of safe drinking water access using multisource satellite 

imagery, point of interest (POI), and aquifer productivity maps. Background 

Problems: There is a lack of alternative data sources for estimating safe 

drinking water access that are cost-, time-, and labor-efficient while 

maintaining high accuracy and frequent updates. Novelty: This study 

integrates Multi-Criteria Decision Analysis (MCDA) and machine learning 

methods to estimate and map safe drinking water access at a 1 km × 1 km 

resolution. Research Methods: Multisource geospatial data were used to 

construct the model. Within the MCDA approach, the Weighted Product Model 

(WPM) was employed to develop the Safe Drinking Water Access Index 

(SDWAI). Meanwhile, the machine learning regression algorithms Adaptive 

Boosting Regression (ABR) and Gradient Boosting Regression (GBR) were 

applied to estimate safe drinking water access at a fine spatial scale. The study 

was conducted in Bengkulu Province, Indonesia. Finding/Results: WPM 

yielded the best MCDA performance (𝑅² = 0.3699, RMSE = 10.6566, MAE = 

9.5427, MAPE = 0.1405), while ABR showed the best machine learning 

performance (𝑅² = 0.4361, RMSE = 10.0813, MAE = 8.3750, MAPE = 

0.1333). 
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1. Introduction 

Water constitutes a vital element for human well-being and the advancement of development [1], 
[2]. Clean water refers to water of sufficient quality suitable for consumption and daily use, including 
sanitation [3]. The growing population has increased demand for clean water, prompting the Indonesian 
government to enhance access to safe water across various regions [4]. Adequate drinking water 
availability is vital for supporting healthy and sustainable living [5]. However, approximately 25% of 
the global population still lacks access to safe water [6]. In Indonesia, drinking water quality standards 
are regulated by Minister of Health Regulation No. 492 of 2010, mandating that water must be 
physically, chemically, and microbiologically safe [6] – [8], with providers responsible for ensuring 
safety throughout distribution [7]. 
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According to WHO/UNICEF, access to safe drinking water includes sources capable of providing 
safe water such as piped supplies, bore wells, protected springs, and rainwater harvesting [9] – [11]. The 
Sustainable Development Goals (SDGs) emphasize universal access to safe and affordable drinking 
water [12]. Despite this, challenges to equitable access in Indonesia include limited funding, insufficient 
infrastructure, capacity constraints, and natural disaster risks [13]. The Ministry of Public Works and 
Housing (PUPR) targets increased household connections to piped water networks, requiring accurate 
and detailed spatial data at the household level to prioritize interventions [14], [15]. 

Detailed data availability is also essential for village governments to manage safe drinking water 
and plan village fund allocations per recent regulations [16], [17]. Currently, access data primarily 
derives from the National Socio-Economic Survey (Susenas), which is costly and limited to district/city 
levels, complicating priority area identification and program evaluation [18], [19]. As an alternative, 
satellite imagery, points of interest (POI), and other spatial data offer advantages in speed, cost-
efficiency, ease of collection, and spatial detail [20]. Aquifer productivity maps further support 
assessment of regional groundwater capacity for clean water supply [21]. To support comprehensive 
spatial decision-making, Multi-Criteria Decision Analysis (MCDA) integrates relevant indicators into 
composite indices for policy guidance [22]. However, MCDA faces limitations with high-dimensional 
and multicollinear data [23]; thus, machine learning techniques complement MCDA by effectively 
extracting patterns from complex datasets [21], [24]. 

Recent studies have identified several geospatial indicators as proxies for understanding safe 
drinking water access. Elevation serves as a proxy for piped infrastructure accessibility, as high-altitude 
areas often face pipeline construction challenges [25]. Slope indicates groundwater potential [26], while 
the Topographic Wetness Index (TWI) relates to surface water utilization, a major water source for 
household piped systems in Indonesia [27]. Night-time Light (NTL) proxies electricity consumption, 
indicating potential access to electric water pumps, with proven efficacy in developing countries [28]. 
The Human Settlement Index (HSI) reflects urban areas with high socio-economic activities [29]. 
Carbon monoxide (CO) pollution correlates with economic growth and poverty, with poorer areas often 
lacking private water infrastructure such as pipes, pumps, or protected wells [25], [30]. Land Surface 
Temperature (LST), linked to urban heat island effects, distinguishes urban and rural areas, correlating 
with disparities in safe water access—urban residents commonly use piped water, while rural 
populations rely on groundwater or unprotected sources [31]. 

Additionally, points of interest (POI) related to economic facilities serve as proxies because 
communities without piped water often depend on accessible economic outlets such as bottled water 
vendors [32]. POI distance water bodies and POI distance IPA are used in modeling access to safe 
drinking water [25], [33], while aquifer productivity maps remain critical for assessing groundwater 
availability [21]. To complement official data on safe drinking water access, this study develops an 
estimation mapping approach using multisource remote sensing, POI, and aquifer productivity maps. 
This method aggregates data at a fine 1 x 1 km scale to produce detailed maps that can be updated more 
efficiently. Consequently, policy decisions aimed at improving equitable access to safe drinking water 
are expected to be better informed and more effective. 

 

2. Material and Methods 

2.1. Study Area 

Bengkulu Province is located to the west of the Bukit Barisan mountain range. It comprises 10 
regencies/municipalities and 129 districts. In Bengkulu, protected wells are the most widely used 
primary source of drinking water for households, accounting for 29.72 percent. According to data from 
BPS-Statistics Indonesia in 2022, Bengkulu ranks as the second lowest province in Indonesia in terms 
of the percentage of access to safe drinking water, following Papua. 

2.2. Data Source 

In this study, satellite imagery, points of interest (POI), and other geospatial data were used to 
develop an index and estimation model for access to safe drinking water. The datasets are described in 
detail in Table 1. 
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Table 1. Data summary 

Variable 
Spatial 

Resolution 

Temporal 

Resolution 
Data Source References 

Elevation 30 m - NASA SRTM [25], [33], [34] 

Slope 30 m - NASA SRTM [25], [33], [34] 

Topographic Wetness 

Index (TWI) 
30 m - NASA SRTM [35] 

Human Settlement 

Index (HSI) 
463,83 m monthly 

Sentinel-2,  

Suomi-NPP VIIRS 
[34] 

Night-time Light (NTL) 463,83 m monthly Suomi-NPP VIIRS [15], [33] 

Carbon Monoxide (CO) 1113,2 m < 1 day Sentinel-5P [30] 

Land Surface 

Temperature (LST) 
1000 m 1 day MODIS [36], [37] 

POI Distance Water 

Bodies 
Point dynamically 

Sentinel-2, 

OpenStreetMap 
[25], [33], [38] 

POI Distance & Density 

Ekonomic 
Point dynamically OpenStreetMap [33] 

POI Distance IPA Point dynamically 
Ministry of Public 

Works and Housing 
[25] 

Aquifer Productivity 100 m - 
Ministry of Energy 

and Mineral Resources 
[21] 

Population Grid 100 m - Worldpop [22], [25], [33] 

Percentage of 

households with access 

to safe drinking water 

Regency, 

district 
2022 

BPS-Statistics 

Indonesia 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Data visualization 

 

This research utilizes remote sensing data, specifically multisource satellite imagery, combined 
with spatial POI data obtained from OpenStreetMap (OSM). The satellite imagery sources used in this 
study comprise Elevation, Slope, and the Topographic Wetness Index (TWI) derived from NASA’s 
SRTM; Nighttime Light (NTL) and Human Settlement Index (HSI) obtained from Suomi-NPP; Carbon 
Monoxide (CO) data from Sentinel-5P; and Land Surface Temperature (LST) data from MODIS. POI 
data were collected from both OpenStreetMap (OSM) and the Ministry of Public Works. Additional 
geospatial datasets included the Aquifer Productivity Map sourced from the Ministry of Energy and 
Mineral Resources and population distribution data from WorldPop. The data visualizations used in this 
study are presented in Figure 1. 
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2.3. Research Framework 

 This research generated a map of safe drinking water access at a 1 km × 1 km spatial resolution to 
offer a more efficient and update-ready alternative to household survey data, while maintaining accuracy 
and detailed spatial representation. The methodological steps involved data acquisition, preprocessing, 
integration and transformation, correlation analysis and variable selection, model construction, and 
subsequent validation and interpretation. Analysis and visualization were carried out using QGIS 3.26.2 
and Python 3.12. The expected outcome is a spatially detailed 1 km × 1 km map of access to safe 
drinking water, accompanied by its validation results, as illustrated in Figure 2.  

Figure 2. The research framework 

2.4. Data Transformation 

Feature extraction from the dataset produced median values for each 1 km × 1 km geographic zone 
across various variables. Subsequently, the values were normalized using the Yeo–Johnson power 
transformation, a method capable of processing variables with either positive or negative ranges [39]. 
This transformation aims to approximate a normal (Gaussian) distribution, thereby enhancing analytical 
and modeling performance [40], as formulated in Equation (1) [39]. 

𝑦𝜆(𝑥) =

{
 
 

 
 (1+𝑥)𝜆−1

𝜆
,𝜆≠0,𝑥≥0

log(1+𝑥),𝜆=0,𝑥≥0

−
(1+𝑥)2−𝜆

2−𝜆
,𝜆≠2,𝑥<0

− log(1−𝑥),𝜆=2,𝑥<0

 (1) 

In this transformation, 𝑥 denotes the variable value or input data, and 𝜆 is a parameter estimated 
using the Maximum Likelihood method under the assumption of normally distributed variables. When 
𝜆 = 1, the transformation is linear; for 𝜆 < 1, it compresses the right tail and stretches the left tail, making 
a right-skewed distribution more symmetric; and for 𝜆 > 1, it adjusts a left-skewed distribution toward 
symmetry. 

2.5. Pearson Correlation 

The Pearson correlation coefficient (𝑟) has a value range from 0 to 1, with the sign indicating 
whether the relationship is positive or negative. The interpretation of the strength of the Pearson 
correlation is shown in Table 2 [41]. 
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Table 2. Interpretation of correlation coefficient 

Range of Values Level of Intensity 

0.00 ≤ |𝒓| ≤ 0.199 Very Weak 

0.20 ≤ |𝒓| ≤ 0.399 Weak 

0.40 ≤ |𝒓| ≤ 0.599 Strong Enough 

0.60 ≤ |𝒓| ≤ 0.799 Strong 

0.80 ≤ |𝒓| ≤ 1.000 Very Strong 

2.6. Multi-Criteria Decision Analysis (MCDA) 

Safe Drinking Water Access Index (SDWAI) was constructed using a Multi-Criteria Decision 
Analysis (MCDA) approach with the Weighted Product Model (WPM). In WPM, the calculation 
involves a multiplicative process, where each alternative’s value is raised to the power of its 
corresponding criterion weight and then multiplied across all criteria to obtain the final score for each 
alternative [42]. The weight of each indicator was determined based on its Pearson correlation 
coefficient. The model is formulated as follows: 

𝑊𝑃𝑀𝑗 = ∏ |𝑋𝑖𝑗|
𝑤𝑖𝑛

𝑖=1  (2) 

where 𝑊𝑃𝑀𝑗 represents the WPM index value for the j-th grid, 𝑋𝑖𝑗 denotes the i-th indicator at the j-th 
grid level, and 𝑤𝑖  refers to the weight of the i-th indicator. 

2.7. Machine Learning 

The estimation model was developed using a machine learning approach, which is widely applied 
in estimation tasks due to its focus on achieving high accuracy—an essential requirement in predictive 
modeling [43]. In this approach, the algorithms employed include Adaptive Boosting Regression (ABR) 
and Gradient Boosting Regression (GBR). Optimal parameters and hyperparameters for each model 
were determined through a grid search combined with 5-fold cross validation. 

Model development was conducted at the sub-district level using data from two different time 
periods. Data from 2021 were used for model training, while data from 2022 were reserved exclusively 
for model testing. This temporal holdout (time-based split) strategy was adopted to prevent data leakage 
and to provide a more realistic assessment of model performance when applied to future data [35]. Such 
a separation between training and testing datasets is commonly recommended in predictive modeling to 
ensure the generalizability of the developed models [44]. 

2.8. Model Evaluation 

The evaluation metrics used include RMSE, MAE, MAPE, Pearson’s correlation coefficient, and 
the coefficient of determination (𝑅2). RMSE, MAE, and MAPE are used to quantify the magnitude of 
error between predicted and observed values, where lower values indicate higher prediction accuracy 
[45]. Pearson’s correlation coefficient is employed to assess the strength of the linear relationship 
between the estimated values and official statistics, while R² measures the proportion of variance in the 
official data explained by the model. Together, these metrics provide a comprehensive evaluation of 
model performance by capturing both prediction accuracy and the consistency of statistical and spatial 
patterns relative to official data. The formulations of RMSE, MAE, MAPE, and 𝑅2 are presented in 
Equations (3) to (6). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)2
𝑛
𝑖=1  (3) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦̂𝑖−𝑦𝑖

𝑦̂𝑖
|𝑛

𝑖=1  (4) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦̂𝑖 − 𝑦𝑖 |
𝑛
𝑖=1  (5) 

𝑅2 = 1 −
∑ (𝑦̂𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1
 (6) 
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3. Results and Discussion 

3.1. Variable Selection 

Before constructing the Safe Drinking Water Access Index (SDWAI), a Pearson correlation 
analysis was conducted to examine the relationship between spatially derived variables and the 
percentage of access to safe drinking water. All variables were aggregated to the regency/municipality 
level and transformed using the Yeo–Johnson method to improve their distributional properties prior to 
analysis. Pearson’s correlation coefficient was employed to quantify the strength and direction of linear 
relationships between the transformed variables and official safe drinking water access data. Variables 
exhibiting statistically significant linear correlations with the percentage of access to safe drinking water 
were considered suitable for inclusion in the SDWAI. The analysis was conducted using official 
statistics available for only 10 regencies/municipalities in Bengkulu Province. 

Statistical significance was evaluated using a significance level of α = 0.15 to reduce the risk of 
excluding potentially relevant variables, given the limited number of regency/municipality-level 
observations. Variables with p-values less than 0.15 were considered statistically significant. The 
significance test was used to identify variables exhibiting sufficiently strong empirical relationships for 
inclusion in the SDWAI. As shown in Table 3, most variables exhibited statistically significant 
correlations at the 15% level. However, the Topographic Wetness Index (TWI), POI Distance to 
Economic Facilities, and POI Distance to IPA did not meet this criterion and were therefore excluded 
from the SDWAI construction. The correlation coefficients of the retained variables were subsequently 
used as weights in the SDWAI formulation. 

 

Table 3. Results of the Pearson correlation 

Variable Correlation p-value Significant 

Elevation -0.570 0.085 Yes 

Slope -0.508 0.134 Yes 

Topographic Wetness Index (TWI) 0.486 0.154 No 

Human Settlement Index (HSI) 0.514 0.129 Yes 

Night-time light (NTL) 0.497 0.144 Yes 

Carbon Monoxide (CO) 0.580 0.079 Yes 

Land Surface Temperature (LST) 0.503 0.139 Yes 

POI Distance Water Bodies 0.825 0.003 Yes 

POI Distance Ekonomic -0.189 0.601 No 

POI Density Ekonomic 0.620 0.056 Yes 

POI Distance IPA 0.284 0.427 No 

Aquifer Productivity -0.512 0.131 Yes 

3.2. The SDWAI Evaluation and Development 

The evaluation to determine the best SDWAI was conducted using correlation (𝑟), 𝑅2, RMSE, 
MAE, and MAPE, with the SDWAI aggregated at the regencies/municipalities level. Table 4 presents 
the evaluation results at this level. The correlation coefficient (𝑟) of 0.6491 suggests that the estimated 
values and the official data are strongly positively correlated. The coefficient of determination (𝑅2) of 
0.3699 suggests that approximately 36.99% of the variation in official safe drinking water access data 
can be explained by the WPM-based estimates. 

 

Table 4. Results of the SDWAI evaluation at the regency/municipality level 

Method 𝒓 𝑹𝟐 RMSE MAE MAPE 

Weight Product Model (WPM) 0.6491 0.3699 10.6566 9.5427 0.1405 
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Access to safe drinking water is closely related to population distribution. The Safe Drinking Water 
Access Index (SDWAI) was generated by overlaying it with grid-level population data obtained from 
WorldPop. This approach allows the index to better reflect spatial variations in demand for drinking 
water services and the concentration of populations potentially affected by limited access. The following 
section displays the SDWAI map generated at a 1 km × 1 km spatial level, as shown in Figure 3. 

Figure 3. The obtained scaled SDWAI-WPM 

The WPM-based mapping results show that areas with index values of 0.00–0.17 are generally 
located far from major activity centers, such as most of Kaur Regency and the western part of North 
Bengkulu Regency. Values of 0.17–0.40 are more widely distributed, covering large parts of 
Mukomuko, North Bengkulu, South Bengkulu, and Rejang Lebong Regencies. Values of 0.40–0.60 are 
concentrated around the center of South Bengkulu Regency and several locations in Bengkulu 
Municipality. Meanwhile, values of 0.60–1 are found only in limited areas in the city center of Bengkulu 
Municipality. 

3.3. The Best Parameter/Hyperparameter Selection 

The machine learning model was developed by selecting the optimal parameters and 
hyperparameters through a grid search process. Table 5 presents the best parameter and hyperparameter 
configurations derived from the 5-fold cross-validation performed with a random state of 42. This 
procedure ensures that the selected models achieve a balance between predictive accuracy and model 
generalizability while minimizing the risk of overfitting. The use of cross-validation further enhances 
the robustness of the parameter selection by evaluating model performance across multiple data 
partitions. 

Each model was trained using grid search and 5-fold cross validation to determine the optimal 
hyperparameters. The model performance was evaluated through two validation approaches, which 
included 5-fold cross-validation and testing on a hold-out dataset, using RMSE, MAE, and MAPE as 
the evaluation metrics. The evaluation results are presented in Table 6. 

 

Table 5. Results of hyperparameter selection 

Model 
Parameter/ 

Hyperparameter 
Options Selected 

Adaptive Boosting Regression 

(ABR) 

n_estimators 100, 500, 1000 100 

learning_rate 0.01, 0.1, 1.0 0.01 

Gradient Boosting Regression 

(GBR) 

n_estimators 500, 1000 500 

learning_rate 0.1, 0.01, 0.001 0.001 

max_depth 1, 3, 9, 12 1 

min_samples_split 8, 10, 12 8 
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Table 6. Results of the evaluation with 5-fold cross-validation and data testing 

Model 
RMSE MAE MAPE 

5-fold CV Test 5-fold CV Test 5-fold CV Test 

ABR 0.9279 0.9709 0.7412 0.7896 0.0189 0.0103 

GBR 0.9699 1.0228 0.8036 0.8574 0.0123 0.0104 

 

Based on the RMSE, MAE, and MAPE values from the test data, the ABR model achieved the best 
performance, with an RMSE of 0.9709, MAE of 0.7896, and MAPE of 0.0103, the lowest among all 
models. This indicates that ABR was able to produce predictions that were closest to the actual values. 
The superior performance of ABR suggests its effectiveness in capturing complex, non-linear 
relationships between multisource geospatial predictors and safe drinking water access. Moreover, the 
ensemble-based nature of ABR enhances model stability by iteratively reducing prediction errors from 
weak learners. 

 

Table 7. Results of the ABR evaluation at the regency/municipality level 

Method 𝒓 𝑹𝟐 RMSE MAE MAPE 

Adaptive Boosting Regression (ABR) 0.7706 0.4361 10.0813 8.3750 0.1333 

 

As shown in Table 7, the correlation coefficient (r) of 0.7706 indicates a strong positive relationship 
between the estimated values and the official data. The coefficient of determination (R²) of 0.4361 
suggests that approximately 43.61% of the variation in official safe drinking water access data can be 
explained by the ABR model estimates. This level of explanatory power is notable given the inherent 
spatial heterogeneity and the limited availability of fine-scale ground truth data. The results indicate that 
the ABR model provides a reliable approximation of official statistics while enabling spatial 
disaggregation at a much finer resolution. 

 

3.4. The Safe Drinking Water Access Mapping 

The machine learning models were trained using data on the percentage of households with access 
to safe drinking water, enabling estimation at the 1 km × 1 km spatial grid. Since SDWAI values range 
from 0 to 1, the first step to enable comparison with the mapped estimates was to align their data ranges. 
The evaluation employed simple linear regression, assigning SDWAI as the independent variable and 
the official district-level estimates as the dependent variable. The resulting regression model was then 
applied to generate SDWAI estimates at the spatial grid. Figure 4 presents the estimated distribution of 
safe drinking water access derived from the SDWAI-WPM model, while Figure 5 displays the 
estimation outcomes generated using the ABR model. 

SDWAI and machine learning maps show similar patterns. Areas with poorer access to safe 
drinking water are located in the northeast, which consists of hilly and mountainous terrain, while areas 
with better access are found in urban regions. The convergence of patterns across both approaches 
indicates that the spatial distribution of safe drinking water access is consistently captured by the index-
based and data-driven models. Topographic constraints and limited infrastructure development in 
mountainous areas likely contribute to lower accessibility, whereas urban regions benefit from more 
developed piped water networks and supporting facilities. This consistency reinforces the reliability of 
the proposed framework in identifying spatial disparities in safe drinking water access at a fine 
resolution. 
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Figure 4. Results of the SDWAI-WPM 
estimation  

Figure 5. Results of the ABR estimation  

3.5. SDWAI Ground Truth Analysis 

Numerous previous studies have shown that ground-truth identification based on high-resolution 
imagery offers an evaluation perspective that cannot be fully represented by purely numerical, pixel-
level validation. In this study, four randomly selected 1 km × 1 km grid cells were examined through 
visual interpretation using Google Earth imagery to characterize their geographic conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 6. SDWAI (scaled index) ground-truth check 
 

The results indicate that areas with high SDWAI scores tend to correspond to moderately to densely 
populated areas with more adequate accessibility (Figure 6). Urban areas generally exhibit higher 
SDWAI values, reflecting better availability of infrastructure and services. In contrast, areas with low 
SDWAI scores are more commonly associated with sparsely populated regions characterized by 
inadequate. These areas tend to be spatially deprived, with limited infrastructure and restricted access 
to basic services. 
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4. Conclusion 

This study successfully achieved its objective of developing a 1 km × 1 km resolution estimation 
model of safe drinking water access by integrating multisource satellite imagery, point of interest (POI) 
data, and aquifer productivity maps. By combining Multi-Criteria Decision Analysis (MCDA) and 
machine learning approaches, the proposed framework enables the generation of fine-scale spatial 
estimates in regions where official statistics are available only at the regency/municipality level.  

The Safe Drinking Water Access Index (SDWAI), developed using the Weighted Product Model 
(WPM), demonstrated a strong positive relationship with official data (𝑟 = 0.6491; 𝑅2 = 0.3699), 
indicating that the MCDA-based approach provides a consistent and interpretable baseline for spatial 
disaggregation. The incorporation of machine learning further improved estimation performance, with 
Adaptive Boosting Regression (ABR) achieving the highest accuracy (𝑟 = 0.7706; 𝑅2 = 0.4361). These 
results show that the complementary use of MCDA and machine learning enhances the robustness of 
the proposed estimation framework.  

The proposed framework has strong potential for practical application, particularly in regions where 
safe drinking water statistics are available only at the regency/municipality level or are updated 
infrequently. The resulting 1 km × 1 km spatial estimates can support evidence-based planning by 
identifying priority areas for the development or expansion of drinking water facilities, enabling 
spatially targeted policy interventions, and informing spatial planning based on local clean water service 
needs. Moreover, this approach offers a cost-effective and scalable alternative to conventional survey-
based methods, complementing official statistics for monitoring progress toward safe drinking water 
access targets in data-scarce regions. 

Despite these contributions, this study has limitations. Validation is constrained by the availability 
of official data only at the regency/municipality level, resulting in an indirect assessment of the 1 km × 
1 km estimates. In addition, field-based ground truth validation, which would ideally support fine-scale 
accuracy assessment, could not be conducted. 
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