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Published 31 December, 2025  drinking water access that are cost-, time-, and labor-efficient while
maintaining high accuracy and frequent updates. Novelty: This study
integrates Multi-Criteria Decision Analysis (MCDA) and machine learning
Keywords: methods to estimate and map safe drinking water access at a 1 km x 1 km
Big Data; Machine Learning; resolution. Research Methods: Multisource geospatial data were used to
Multi-Criteria Decision construct the model. Within the MCDA approach, the Weighted Product Model
Analysis; Safe Drinking Water (WPM) was employed to develop the Safe Drinking Water Access Index
Access; Satellite Imagery (SDWAI). Meanwhile, the machine learning regression algorithms Adaptive
Boosting Regression (ABR) and Gradient Boosting Regression (GBR) were
applied to estimate safe drinking water access at a fine spatial scale. The study
was conducted in Bengkulu Province, Indonesia. Finding/Results: WPM
yielded the best MCDA performance (R? = 0.3699, RMSE = 10.6566, MAE =
9.5427, MAPE = 0.1405), while ABR showed the best machine learning
performance (R? = 0.4361, RMSE = 10.0813, MAE = 8.3750, MAPE =
0.1333).

1. Introduction

Water constitutes a vital element for human well-being and the advancement of development [1],
[2]. Clean water refers to water of sufficient quality suitable for consumption and daily use, including
sanitation [3]. The growing population has increased demand for clean water, prompting the Indonesian
government to enhance access to safe water across various regions [4]. Adequate drinking water
availability is vital for supporting healthy and sustainable living [5]. However, approximately 25% of
the global population still lacks access to safe water [6]. In Indonesia, drinking water quality standards
are regulated by Minister of Health Regulation No. 492 of 2010, mandating that water must be
physically, chemically, and microbiologically safe [6] — [8], with providers responsible for ensuring
safety throughout distribution [7].
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According to WHO/UNICEF, access to safe drinking water includes sources capable of providing
safe water such as piped supplies, bore wells, protected springs, and rainwater harvesting [9] —[11]. The
Sustainable Development Goals (SDGs) emphasize universal access to safe and affordable drinking
water [12]. Despite this, challenges to equitable access in Indonesia include limited funding, insufficient
infrastructure, capacity constraints, and natural disaster risks [13]. The Ministry of Public Works and
Housing (PUPR) targets increased household connections to piped water networks, requiring accurate
and detailed spatial data at the household level to prioritize interventions [14], [15].

Detailed data availability is also essential for village governments to manage safe drinking water
and plan village fund allocations per recent regulations [16], [17]. Currently, access data primarily
derives from the National Socio-Economic Survey (Susenas), which is costly and limited to district/city
levels, complicating priority area identification and program evaluation [18], [19]. As an alternative,
satellite imagery, points of interest (POI), and other spatial data offer advantages in speed, cost-
efficiency, ease of collection, and spatial detail [20]. Aquifer productivity maps further support
assessment of regional groundwater capacity for clean water supply [21]. To support comprehensive
spatial decision-making, Multi-Criteria Decision Analysis (MCDA) integrates relevant indicators into
composite indices for policy guidance [22]. However, MCDA faces limitations with high-dimensional
and multicollinear data [23]; thus, machine learning techniques complement MCDA by effectively
extracting patterns from complex datasets [21], [24].

Recent studies have identified several geospatial indicators as proxies for understanding safe
drinking water access. Elevation serves as a proxy for piped infrastructure accessibility, as high-altitude
areas often face pipeline construction challenges [25]. Slope indicates groundwater potential [26], while
the Topographic Wetness Index (TWI) relates to surface water utilization, a major water source for
household piped systems in Indonesia [27]. Night-time Light (NTL) proxies electricity consumption,
indicating potential access to electric water pumps, with proven efficacy in developing countries [28].
The Human Settlement Index (HSI) reflects urban areas with high socio-economic activities [29].
Carbon monoxide (CO) pollution correlates with economic growth and poverty, with poorer areas often
lacking private water infrastructure such as pipes, pumps, or protected wells [25], [30]. Land Surface
Temperature (LST), linked to urban heat island effects, distinguishes urban and rural areas, correlating
with disparities in safe water access—urban residents commonly use piped water, while rural
populations rely on groundwater or unprotected sources [31].

Additionally, points of interest (POI) related to economic facilities serve as proxies because
communities without piped water often depend on accessible economic outlets such as bottled water
vendors [32]. POI distance water bodies and POI distance IPA are used in modeling access to safe
drinking water [25], [33], while aquifer productivity maps remain critical for assessing groundwater
availability [21]. To complement official data on safe drinking water access, this study develops an
estimation mapping approach using multisource remote sensing, POI, and aquifer productivity maps.
This method aggregates data at a fine 1 x 1 km scale to produce detailed maps that can be updated more
efficiently. Consequently, policy decisions aimed at improving equitable access to safe drinking water
are expected to be better informed and more effective.

2. Material and Methods
2.1. Study Area

Bengkulu Province is located to the west of the Bukit Barisan mountain range. It comprises 10
regencies/municipalities and 129 districts. In Bengkulu, protected wells are the most widely used
primary source of drinking water for households, accounting for 29.72 percent. According to data from
BPS-Statistics Indonesia in 2022, Bengkulu ranks as the second lowest province in Indonesia in terms
of the percentage of access to safe drinking water, following Papua.

2.2. Data Source

In this study, satellite imagery, points of interest (POI), and other geospatial data were used to
develop an index and estimation model for access to safe drinking water. The datasets are described in
detail in Table 1.
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Table 1. Data summary

Variable Spatial . Temporgl Data Source References
Resolution  Resolution
Elevation 30 m - NASA SRTM [25], [33], [34]
Slope 30m - NASA SRTM [25], [33], [34]
Topographic Wetness
Index (TWT) 30m - NASA SRTM [35]
Human Settlement Sentinel-2,
Index (HSI) 463,83m  monthly Suomi-NPP VIIRS [34]
Night-time Light (NTL) 463,83 m monthly Suomi-NPP VIIRS [15], [33]
Carbon Monoxide (CO) 1113,2m <1 day Sentinel-5P [30]
Land Surface
Temperature (LST) 1000 m 1 day MODIS [36], [37]
POI Distance Water . . Sentinel-2,
Bodies Point dynamically OpenStrectMap [25], [33], [38]
POI Distance & Density . .
Ekonomic Point dynamically OpenStreetMap [33]
. . . Ministry of Public
POI Distance IPA Point dynamically Works and Housing [25]
. . Ministry of Energy
Aquifer Productivity 100 m - and Mineral Resources [21]
Population Grid 100 m - Worldpop [22], [25], [33]
Percentage of -
households with access 1 o2e1eY> 2022 BESSSEHsacs
district Indonesia

to safe drinking water

(i) POI Distance IPA

Figure 1. Data visualization

) POI Distance & Dunsity Lkonomic

This research utilizes remote sensing data, specifically multisource satellite imagery, combined
with spatial POI data obtained from OpenStreetMap (OSM). The satellite imagery sources used in this
study comprise Elevation, Slope, and the Topographic Wetness Index (TWI) derived from NASA’s
SRTM; Nighttime Light (NTL) and Human Settlement Index (HSI) obtained from Suomi-NPP; Carbon
Monoxide (CO) data from Sentinel-5P; and Land Surface Temperature (LST) data from MODIS. POI
data were collected from both OpenStreetMap (OSM) and the Ministry of Public Works. Additional
geospatial datasets included the Aquifer Productivity Map sourced from the Ministry of Energy and
Mineral Resources and population distribution data from WorldPop. The data visualizations used in this
study are presented in Figure 1.
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2.3. Research Framework

This research generated a map of safe drinking water access ata 1 km % 1 km spatial resolution to
offer a more efficient and update-ready alternative to household survey data, while maintaining accuracy
and detailed spatial representation. The methodological steps involved data acquisition, preprocessing,
integration and transformation, correlation analysis and variable selection, model construction, and
subsequent validation and interpretation. Analysis and visualization were carried out using QGIS 3.26.2
and Python 3.12. The expected outcome is a spatially detailed 1 km x 1 km map of access to safe
drinking water, accompanied by its validation results, as illustrated in Figure 2.

Problem Solution Evaluation and Objective

/ \ / Data Source

Satellite Imagery

Variables \ / Model Development\

NASA SRTM Elevation MCDA
rg
Sentinel-5P Slope
The absence of an
alternative data N\ J
source for safe
drinking water H / \
access that is cost-
effective, time-
efficient, labor- hine L
efficient, and still -
maintﬂins hlgh POI Distance &
accuracy at a fine- Density Ekonomic Adaptive Boosting i
grained level with N Regression

POI Distance IPA

Other Spatial Data
Ministry of EMR

frequent updates.

Safe Drinking Water

[ Gradient I Access Map at 1 km

Agquifer Productivity

x 1 km Grid Level

Boosting Regression

Population Grid

|
]
= =4

Worldpop
=
I
Official Data
BPS-Statistics Indonesia District and Subdistrict Data
- A\ ) N /

Figure 2. The research framework

2.4. Data Transformation

Feature extraction from the dataset produced median values for each 1 km x 1 km geographic zone
across various variables. Subsequently, the values were normalized using the Yeo—Johnson power
transformation, a method capable of processing variables with either positive or negative ranges [39].
This transformation aims to approximate a normal (Gaussian) distribution, thereby enhancing analytical
and modeling performance [40], as formulated in Equation (1) [39].

A_
( %,Aio,xzo

log(1+x),4=0,x=0

2-1
—%Aiz,ymo

—log(1—x),A=2,x<0

() = (M

In this transformation, x denotes the variable value or input data, and 4 is a parameter estimated
using the Maximum Likelihood method under the assumption of normally distributed variables. When
A =1, the transformation is linear; for A <1, it compresses the right tail and stretches the left tail, making
a right-skewed distribution more symmetric; and for A > 1, it adjusts a left-skewed distribution toward
symmetry.

2.5. Pearson Correlation
The Pearson correlation coefficient (r) has a value range from 0 to 1, with the sign indicating

whether the relationship is positive or negative. The interpretation of the strength of the Pearson
correlation is shown in Table 2 [41].
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Table 2. Interpretation of correlation coefficient

Range of Values

Level of Intensity

0.00 <|r| <0.199 Very Weak
0.20 <|r| <0.399 Weak

0.40 <|r| <0.599 Strong Enough
0.60 <|r| <0.799 Strong

0.80 <|r| <1.000 Very Strong

2.6. Multi-Criteria Decision Analysis (MCDA)

Safe Drinking Water Access Index (SDWAI) was constructed using a Multi-Criteria Decision
Analysis (MCDA) approach with the Weighted Product Model (WPM). In WPM, the calculation
involves a multiplicative process, where each alternative’s value is raised to the power of its
corresponding criterion weight and then multiplied across all criteria to obtain the final score for each
alternative [42]. The weight of each indicator was determined based on its Pearson correlation
coefficient. The model is formulated as follows:

WPM; = [T, | x| 2)

where WPM; represents the WPM index value for the j-th grid, X;; denotes the i-th indicator at the j-th
grid level, and w; refers to the weight of the i-th indicator.

2.7. Machine Learning

The estimation model was developed using a machine learning approach, which is widely applied
in estimation tasks due to its focus on achieving high accuracy—an essential requirement in predictive
modeling [43]. In this approach, the algorithms employed include Adaptive Boosting Regression (ABR)
and Gradient Boosting Regression (GBR). Optimal parameters and hyperparameters for each model
were determined through a grid search combined with 5-fold cross validation.

Model development was conducted at the sub-district level using data from two different time
periods. Data from 2021 were used for model training, while data from 2022 were reserved exclusively
for model testing. This temporal holdout (time-based split) strategy was adopted to prevent data leakage
and to provide a more realistic assessment of model performance when applied to future data [35]. Such
a separation between training and testing datasets is commonly recommended in predictive modeling to
ensure the generalizability of the developed models [44].

2.8. Model Evaluation

The evaluation metrics used include RMSE, MAE, MAPE, Pearson’s correlation coefficient, and
the coefficient of determination (R?). RMSE, MAE, and MAPE are used to quantify the magnitude of
error between predicted and observed values, where lower values indicate higher prediction accuracy
[45]. Pearson’s correlation coefficient is employed to assess the strength of the linear relationship
between the estimated values and official statistics, while R? measures the proportion of variance in the
official data explained by the model. Together, these metrics provide a comprehensive evaluation of
model performance by capturing both prediction accuracy and the consistency of statistical and spatial
patterns relative to official data. The formulations of RMSE, MAE, MAPE, and R? are presented in
Equations (3) to (6).

RMSE = [LXL,G: - ®
MAPE = 3L, [ @)
MAE = TL.19:— yi] )
-y ‘
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3. Results and Discussion

3.1. Variable Selection

Before constructing the Safe Drinking Water Access Index (SDWAI), a Pearson correlation
analysis was conducted to examine the relationship between spatially derived variables and the
percentage of access to safe drinking water. All variables were aggregated to the regency/municipality
level and transformed using the Yeo—Johnson method to improve their distributional properties prior to
analysis. Pearson’s correlation coefficient was employed to quantify the strength and direction of linear
relationships between the transformed variables and official safe drinking water access data. Variables
exhibiting statistically significant linear correlations with the percentage of access to safe drinking water
were considered suitable for inclusion in the SDWAIL The analysis was conducted using official
statistics available for only 10 regencies/municipalities in Bengkulu Province.

Statistical significance was evaluated using a significance level of o = 0.15 to reduce the risk of
excluding potentially relevant variables, given the limited number of regency/municipality-level
observations. Variables with p-values less than 0.15 were considered statistically significant. The
significance test was used to identify variables exhibiting sufficiently strong empirical relationships for
inclusion in the SDWAIL As shown in Table 3, most variables exhibited statistically significant
correlations at the 15% level. However, the Topographic Wetness Index (TWI), POI Distance to
Economic Facilities, and POI Distance to IPA did not meet this criterion and were therefore excluded
from the SDWALI construction. The correlation coefficients of the retained variables were subsequently
used as weights in the SDWAI formulation.

Table 3. Results of the Pearson correlation

Variable Correlation p-value Significant
Elevation -0.570 0.085 Yes
Slope -0.508 0.134 Yes
Topographic Wetness Index (TWI) 0.486 0.154 No
Human Settlement Index (HSI) 0.514 0.129 Yes
Night-time light (NTL) 0.497 0.144 Yes
Carbon Monoxide (CO) 0.580 0.079 Yes
Land Surface Temperature (LST) 0.503 0.139 Yes
POI Distance Water Bodies 0.825 0.003 Yes
POI Distance Ekonomic -0.189 0.601 No
POI Density Ekonomic 0.620 0.056 Yes
POI Distance IPA 0.284 0.427 No
Aquifer Productivity -0.512 0.131 Yes

3.2. The SDWAI Evaluation and Development

The evaluation to determine the best SDWAI was conducted using correlation (r), R?, RMSE,
MAE, and MAPE, with the SDWAI aggregated at the regencies/municipalities level. Table 4 presents
the evaluation results at this level. The correlation coefficient (r) of 0.6491 suggests that the estimated
values and the official data are strongly positively correlated. The coefficient of determination (R?) of
0.3699 suggests that approximately 36.99% of the variation in official safe drinking water access data
can be explained by the WPM-based estimates.

Table 4. Results of the SDWAI evaluation at the regency/municipality level
Method T R? RMSE  MAE MAPE
Weight Product Model (WPM) 0.6491 0.3699 10.6566  9.5427 0.1405
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Access to safe drinking water is closely related to population distribution. The Safe Drinking Water
Access Index (SDWALI) was generated by overlaying it with grid-level population data obtained from
WorldPop. This approach allows the index to better reflect spatial variations in demand for drinking
water services and the concentration of populations potentially affected by limited access. The following
section displays the SDWAI map generated ata 1 km x 1 km spatial level, as shown in Figure 3.

SDWAI-Weight Product Model
J0,00-0,17

[ Unpopulated Area

Figure 3. The obtained scaled SDWAI-WPM

The WPM-based mapping results show that areas with index values of 0.00—0.17 are generally
located far from major activity centers, such as most of Kaur Regency and the western part of North
Bengkulu Regency. Values of 0.17-0.40 are more widely distributed, covering large parts of
Mukomuko, North Bengkulu, South Bengkulu, and Rejang Lebong Regencies. Values of 0.40—0.60 are
concentrated around the center of South Bengkulu Regency and several locations in Bengkulu
Municipality. Meanwhile, values of 0.60—1 are found only in limited areas in the city center of Bengkulu
Municipality.

3.3. The Best Parameter/Hyperparameter Selection

The machine learning model was developed by selecting the optimal parameters and
hyperparameters through a grid search process. Table 5 presents the best parameter and hyperparameter
configurations derived from the 5-fold cross-validation performed with a random state of 42. This
procedure ensures that the selected models achieve a balance between predictive accuracy and model
generalizability while minimizing the risk of overfitting. The use of cross-validation further enhances
the robustness of the parameter selection by evaluating model performance across multiple data
partitions.

Each model was trained using grid search and 5-fold cross validation to determine the optimal
hyperparameters. The model performance was evaluated through two validation approaches, which
included 5-fold cross-validation and testing on a hold-out dataset, using RMSE, MAE, and MAPE as
the evaluation metrics. The evaluation results are presented in Table 6.

Table 5. Results of hyperparameter selection

Model Parameter/ Options Selected
Hyperparameter
Adaptive Boosting Regression n_estimators 100, 500, 1000 100
(ABR) learning_rate 0.01, 0.1, 1.0 0.01
Gradient Boosting Regression n_estimators 500, 1000 500
(GBR) learning_rate 0.1, 0.01, 0.001 0.001
max_depth 1,3,9,12 1
min samples split 8, 10,12 8
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Table 6. Results of the evaluation with 5-fold cross-validation and data testing

Model RMSE MAE MAPE

5-fold CV Test S5-fold CV Test S5-fold CV Test
ABR 0.9279 0.9709 0.7412 0.7896 0.0189 0.0103
GBR 0.9699 1.0228 0.8036 0.8574 0.0123 0.0104

Based on the RMSE, MAE, and MAPE values from the test data, the ABR model achieved the best
performance, with an RMSE of 0.9709, MAE of 0.7896, and MAPE of 0.0103, the lowest among all
models. This indicates that ABR was able to produce predictions that were closest to the actual values.
The superior performance of ABR suggests its effectiveness in capturing complex, non-linear
relationships between multisource geospatial predictors and safe drinking water access. Moreover, the
ensemble-based nature of ABR enhances model stability by iteratively reducing prediction errors from
weak learners.

Table 7. Results of the ABR evaluation at the regency/municipality level

Method r R? RMSE MAE MAPE
Adaptive Boosting Regression (ABR)  0.7706 0.4361 10.0813  8.3750 0.1333

As shown in Table 7, the correlation coefficient (r) of 0.7706 indicates a strong positive relationship
between the estimated values and the official data. The coefficient of determination (R?) of 0.4361
suggests that approximately 43.61% of the variation in official safe drinking water access data can be
explained by the ABR model estimates. This level of explanatory power is notable given the inherent
spatial heterogeneity and the limited availability of fine-scale ground truth data. The results indicate that
the ABR model provides a reliable approximation of official statistics while enabling spatial
disaggregation at a much finer resolution.

3.4. The Safe Drinking Water Access Mapping

The machine learning models were trained using data on the percentage of households with access
to safe drinking water, enabling estimation at the 1 km x 1 km spatial grid. Since SDWAI values range
from 0 to 1, the first step to enable comparison with the mapped estimates was to align their data ranges.
The evaluation employed simple linear regression, assigning SDWALI as the independent variable and
the official district-level estimates as the dependent variable. The resulting regression model was then
applied to generate SDWALI estimates at the spatial grid. Figure 4 presents the estimated distribution of
safe drinking water access derived from the SDWAI-WPM model, while Figure 5 displays the
estimation outcomes generated using the ABR model.

SDWALI and machine learning maps show similar patterns. Areas with poorer access to safe
drinking water are located in the northeast, which consists of hilly and mountainous terrain, while areas
with better access are found in urban regions. The convergence of patterns across both approaches
indicates that the spatial distribution of safe drinking water access is consistently captured by the index-
based and data-driven models. Topographic constraints and limited infrastructure development in
mountainous areas likely contribute to lower accessibility, whereas urban regions benefit from more
developed piped water networks and supporting facilities. This consistency reinforces the reliability of
the proposed framework in identifying spatial disparities in safe drinking water access at a fine
resolution.
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3.5. SDWAI Ground Truth Analysis

Numerous previous studies have shown that ground-truth identification based on high-resolution
imagery offers an evaluation perspective that cannot be fully represented by purely numerical, pixel-
level validation. In this study, four randomly selected 1 km % 1 km grid cells were examined through
visual interpretation using Google Earth imagery to characterize their geographic conditions.

i o/ .
Moderate populated arca. in the middle
of city and near highway. arca with very
adequate accessibility. Bengkulu Tengah
SDWAL: 0.69

Denscly populated arca, Kota Bengkulu
SDWAT: 0.

[J0,00-0,17
I 0,17 - 0,40
I 0,40 - 0,60
. 0,60-1

SDWAI-Weight Product Model

[7] Unpopulated Area

A sparsely populated surrounded by
fields, Seluma
SDWAL: 0.02

A sparsely populated area with lots of
trees. Bengkulu Selatan
SDWAL: 0.03

100 km

Figure 6. SDWALI (scaled index) ground-truth check

The results indicate that areas with high SDW AI scores tend to correspond to moderately to densely

populated areas with

more adequate accessibility (Figure 6). Urban areas generally exhibit higher

SDWALI values, reflecting better availability of infrastructure and services. In contrast, areas with low
SDWALI scores are more commonly associated with sparsely populated regions characterized by
inadequate. These areas tend to be spatially deprived, with limited infrastructure and restricted access

to basic services.
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4. Conclusion

This study successfully achieved its objective of developing a 1 km X 1 km resolution estimation
model of safe drinking water access by integrating multisource satellite imagery, point of interest (POI)
data, and aquifer productivity maps. By combining Multi-Criteria Decision Analysis (MCDA) and
machine learning approaches, the proposed framework enables the generation of fine-scale spatial
estimates in regions where official statistics are available only at the regency/municipality level.

The Safe Drinking Water Access Index (SDWALI), developed using the Weighted Product Model
(WPM), demonstrated a strong positive relationship with official data (r = 0.6491; R? = 0.3699),
indicating that the MCDA-based approach provides a consistent and interpretable baseline for spatial
disaggregation. The incorporation of machine learning further improved estimation performance, with
Adaptive Boosting Regression (ABR) achieving the highest accuracy (r = 0.7706; R? = 0.4361). These
results show that the complementary use of MCDA and machine learning enhances the robustness of
the proposed estimation framework.

The proposed framework has strong potential for practical application, particularly in regions where
safe drinking water statistics are available only at the regency/municipality level or are updated
infrequently. The resulting 1 km x 1 km spatial estimates can support evidence-based planning by
identifying priority areas for the development or expansion of drinking water facilities, enabling
spatially targeted policy interventions, and informing spatial planning based on local clean water service
needs. Moreover, this approach offers a cost-effective and scalable alternative to conventional survey-
based methods, complementing official statistics for monitoring progress toward safe drinking water
access targets in data-scarce regions.

Despite these contributions, this study has limitations. Validation is constrained by the availability
of official data only at the regency/municipality level, resulting in an indirect assessment of the 1 km x
1 km estimates. In addition, field-based ground truth validation, which would ideally support fine-scale
accuracy assessment, could not be conducted.
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