SMALL AREA ESTIMATION WITH EXCESS ZERO (CASE STUDY: INFANT MORTALITY RATE IN JAVA ISLAND)

##plugins.themes.bootstrap3.article.main##

Nofita Istiana

Abstract

Infant Mortality Rate (IMR) is an important indicator because it can be used to compare health status between populations. IMR is obtained from Demographic and Health Survey (DHS) where the level of estimation is designed for national and provincial level. The decentralization system makes the importance of IMR for sub-domain of province such as district/municipality level. Small area estimation (SAE) can be used for estimating IMR in district/municipality level by using a mixed model. IMR is count data with small probability, so the distribution is Poisson. Poisson model assumes that mean equal to variance, but this assumption is often violated. One of the reasons is excess zero. In this study, Zero Inflated Poisson (ZIP) mixed model is much better than Poisson mixed model and can improve the direct estimation of IMR.

##plugins.themes.bootstrap3.article.details##

How to Cite
ISTIANA, Nofita. SMALL AREA ESTIMATION WITH EXCESS ZERO (CASE STUDY: INFANT MORTALITY RATE IN JAVA ISLAND). Jurnal Aplikasi Statistika & Komputasi Statistik, [S.l.], v. 13, n. 1, p. 25-34, sep. 2021. ISSN 2615-1367. Available at: <https://jurnal.stis.ac.id/index.php/jurnalasks/article/view/270>. Date accessed: 22 sep. 2021. doi: https://doi.org/10.34123/jurnalasks.v13i1.270.
Section
Statistika Kependudukan

References

Anggreyani A. 2016. Kajian Pendugaan Area Kecil Untuk Menduga Jumlah Kematian Bayi Di Jawa Barat [tesis]. Bogor (ID): Institut Pertanian Bogor.
[BPS] Badan Pusat Statistik (ID). 2017. Laporan Survey Demografi dan Kesehatan 2017.
Broek J. 1995. A Score Test for Zero Inflation In a Poisson Distribution. Biometrics. 51: 738-743. doi: 10.2307/2532959.
Cameron A, Trivedi P. 1998. Regression Analysis of Count Data. Cambridge: Cambridge University Press.
Molina I, Salvati N, Pratesi M. 2009. Bootstrap for Estimating the MSE of The Spatial EBLUP. Comput Stat. 24:441–458.
Murray CJL, Salomon JA, Mathers C. A Critical Examination of Summary measures of Population Health. Bull World Health Organ, 2000;78:981–94.
Rao JNK, Molina I. 2015. Small Area Estimation 2nd ed. New Jersey: John Wiley & Son.
Ridout M, Demetrio CGB, Hinde J. 1998. Models for Count Data With Many Zeros. International Biometric Conference, Cape Town, Desember 1998.
Stroup WW. 2013. Generalized Linear Mixed Models, New York: Chapman & Hall/CRC.
Wahyudi, Notodiputro KA, Kurnia A, Anisa R. 2016. A Study of Area Clustering Using Factor Analysis In Small Area Estimation (An Analysis of Per Capita Expenditures Of Subdistricts Level In Regency And Municipality Of Bogor). AIP Conference Proceedings 1707, 080017 (2016). doi: 10.1063/1.4940874
Sundara VY, Sadik K, Kurnia A. 2017. Clustering Information of Non-Sampled Area in Small Area Estimation of Poverty Indicators. AIP Conference Proceedings 1827, 020026 (2017). https://doi.org/10.1063/1.4979442
[USAID] United States Agency for International Development (US). 2018. Guide to DHS statistics.
Winkelmann R. 2008. Econometric Analysis of Count Data 5th edition, Berlin: Springer.