Penerapan Regresi Generalized Poisson Pada Valuasi Ekonomi Objek Agrowisata Studi Kasus Taman Bunga X di Kabupaten Pandeglang Provinsi Banten

##plugins.themes.bootstrap3.article.main##

Moch Suryana Weksi Budiaji Setiawan Sariyoga

Abstract

An economic valuation of a tourism object is important to improve the tourism object properly. This study was conducted to identify the factors that influence the number of tourist demand and to estimate the economic value of an Agrotourism. The number of samples was 72 respondents from the agrotourism visitors taken purposively. The factors in this study were travel expenses, income rate, distance, age, education level and perception of the respondents. The tourism demand of the Agrotourism, as measured by the visit frequencies, was modelled via six Generalized Poisson regressions. The best model of the Generalized Poisson regression was opted based the Akaike Information Criteria (AIC). The result showed that the tourism demand was significantly depended on the distance from the origin. The travel expenses coefficient from the Generalized Poisson regression was extracted to compute the consumer surplus of the agrotourism object resulted in Rp 284,900 each visitation. It was higher than the ticket price as much Rp 7,000. - such that visitors gained excess benefit. The economic value of the Agrotourism was Rp 2,165,240,000. - per year calculated from February 2020 until January 2021 indicated that the agrotourism object has to be preserved.

##plugins.themes.bootstrap3.article.details##

How to Cite
SURYANA, Moch; BUDIAJI, Weksi; SARIYOGA, Setiawan. Penerapan Regresi Generalized Poisson Pada Valuasi Ekonomi Objek Agrowisata. Jurnal Aplikasi Statistika & Komputasi Statistik, [S.l.], v. 14, n. 1, p. 13-22, mar. 2022. ISSN 2615-1367. Available at: <https://jurnal.stis.ac.id/index.php/jurnalasks/article/view/384>. Date accessed: 26 june 2022. doi: https://doi.org/10.34123/jurnalasks.v14i1.384.
Section
Articles

References

Adams, S. O., Obaromi, D. A., & Rauf, R. I. (2021). Modelling the Number of Household Visit to Health Care Centres in Some Nigeria Communities Using Count Data Regression Models. J Biostat Epidemiol, 7(1):36-47
Arifa, E., Abidin, Z., & Marlina, L. (2019). Valuasi Ekonomi Kawasan Wisata Pulau Pisang Kabupaten Pesisir Barat. Jurnal Ilmu Ilmu Agribisnis, 7(4), 568–574.
Budiaji, W. (2013). Skala Pengukuran dan Jumlah Respon Skala Likert. Jurnal Ilmu Pertanian Dan Perikanan, 2(2), 127–133.
Budiaji, W. (2019). Penerapan Reproducible Research pada RStudio dengan Bahasa R dan Paket Knitr. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 5(1), 1–5.
Famoye, F. (1993). Restricted Generalized Poisson Regression. Commnunication in Statistics-Theory and Methods, 33: 1135-1154
Fauzi, A. (2010). Ekonomi Sumber Daya Alam dan Lingkungan: Teori dan Aplikasi. Gramedia Pustaka Utama.
Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression (Third). Sage.
Haban, Y., Kolengan, R. A. M., & Kawung, G. M. V. (2017). Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kunjungan dan Nilai Ekonomi Kebun Raya Bogor. Jurnal Pembangunan Ekonomi Dan Keuangan Daerah, 18(4), 1–19.
Hendarto, K. A., Hasan, R. A., Yumantoko, Y., Nur, A., & Ariawan, K. (2019). The Economic Value of Recreational Benefit of Aik Nyet Nature Tourism, KPHL Rinjani Barat, An Application of The Travel Cost Method. Jurnal Penelitian Sosial Dan Ekonomi Kehutanan, 16(1), 43–54.
Kurniasih, I., Nurhayati, A., Dewanti, L. P., & Rizal, A. (2020). Potensi Wisata Bahari di Kabupaten Pangandaran. Jurnal Perikanan Dan Kelautan, 10(1), 8–19.
Mendes, I., & Proenca, I. (2011). Measuring the Social Recreation Per-Day Net Benefit of the Wildlife Amenities of a National Park: A Count-Data Travel-Cost Approach. Environmental Management, 48(5):920-32
Oelker, M., Gertheiss, J., & Tutz, G. (2014). Regularization and Model Selection with Categorical Predictors and Effect Modifiers in Generalized Linear Models. Statistical Modelling, 14(2), 155–177.
Premono, B. T., & Kunarso, A. (2015). Valuasi Ekonomi Taman Wisata Punti Ayu Palembang. Jurnal Penelitian Hutan Dan Konservasi Alam, 7(1), 13–23.
R Core Team. (2020). R: A Language and Environment for Statistical Computing (4.0.3) [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/
Rencher, A. C., & Schaalje, G. B. (2008). Linear Models in Statistics. John Wiley & Sons. New Jersey: US.
Ruliana, R., Hendikawati, P., & Agoestanto, A. (2016). Pemodelan Generalized Poisson Regression (GPR) untuk Mengatasi Pelanggaran Equidispersi pada Regresi Poisson Kasus Campak di Kota Semarang Tahun 2013. Journal of Mathematics, 5(1), 39–46.
Saffari, S. E., Allen, J. C., Adnan, R., Ong, S. H., Sim, S. Z., & Greene, W. (2019). Frequency of Visiting a Doctor: A right Truncated Count Regression Model with Excess Zeros. Biostat Biom Open Access J, 9 (5): 555773
Utami, T. W. (2013). Analisis Regresi Binomial Negatif untuk Mengatasi Overdispersion Regresi Poisson pada Kasus Demam Berdarah Dengue. Jurnal Statistika, 1(2), 59–65.
Wanti, L. W., Syaukat, Y., & Juanda, B. (2014). Analisis Nilai Ekonomi Wisata Kebun Kina Bukit Unggul Kabupaten Bandung. Jurnal Ekonomi Pertanian, Sumberdaya, Dan Lingkungan, 2, 44–55.
Wulandari, I. R., & Melaniani, S. (2015). Estimasi Parameter Model Generalized Poisson Regression Jumlah Kematian Ibu di Jawa Timur yang Mengalami Overdispersi. Jurnal Biometrika Dan Kependudukan, 4(2), 143–151.
Yee, T. W., Stoklosa, J., & Huggins, R. M. (2015). The VGAM Package for Capture-Recapture Data Using the Conditional Likelihood. Journal of Statistical Software, 65(5), 1–33.
Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression Models for Count Data in R. Journal of Statistical Software, 27(8), 1–25.