Geographically Weighted Poisson Regression for Modeling the Number of Maternal Deaths in Papua Province

Authors

  • Toha Saifudin Departemen Matematika, Fakultas Sains dan Teknologi, Universitas Airlangga
  • Nur Rahmah Miftakhul Jannah Departemen Matematika, Fakultas Sains dan Teknologi, Universitas Airlangga
  • Risky Wahyuningsih Departemen Matematika, Fakultas Sains dan Teknologi, Universitas Airlangga
  • Gaos Tipki Alpandi Departemen Matematika, Fakultas Sains dan Teknologi, Universitas Airlangga

DOI:

https://doi.org/10.34123/jurnalasks.v16i1.598

Abstract

Introduction/Main Objectives: Maternal Mortality Rate (MMR) in Indonesia is one of the main focuses in achieving the third Sustainable Development Goals (SDGs) in 2030. Background Problems: The Central Statistics Agency states that the MMR in Papua Province is the highest, reaching 565. Novelty: Given the diverse geographical conditions of each district/city in Papua Province, an analysis was carried out. Research Methods: Using the Geographically Weighted Poisson Regression (GWPR) method with the response variable being maternal mortality rates and variables predictors of health, social, and environmental factors. Finding/Results: Fixed Gaussian kernel GWPR is the best model with an AIC value of 27.6. Variable significantly influencing MMR include the percentage of households with access to adequate sanitation, the number of recipients of food assistance programs, and the number of doctors.

Downloads

Download data is not yet available.

Downloads

Published

2024-06-30

How to Cite

Saifudin, T., Nur Rahmah Miftakhul Jannah, Risky Wahyuningsih, & Gaos Tipki Alpandi. (2024). Geographically Weighted Poisson Regression for Modeling the Number of Maternal Deaths in Papua Province. Jurnal Aplikasi Statistika & Komputasi Statistik, 16(1), 32–42. https://doi.org/10.34123/jurnalasks.v16i1.598