The Utilization of Model Output Statistic (MOS) in Improving Weather Prediction Model Accuracy of Integrated Forecasting System (IFS)
DOI:
https://doi.org/10.34123/jurnalasks.v16i2.732Keywords:
accuracy, IFS, MOS, prediction, regression, weatherAbstract
Introduction/Main Objectives: Integrated Forecasting System (IFS) is one of the most accurate numerical weather prediction (NWP) model for Indonesia region. Background Problems: However, in fact, each model always has bias potential against observation which causes inaccuracy in weather prediction. Novelty: This research intends to overcome this problem by building a weather prediction model based on Model Output Statistic (MOS) to minimize bias and improve NWP accuracy. Research Methods: Provide an outline of the research method(s) and data used in this paper. Explain how did you go about doing this research. Again, avoid unnecessary content and do not make any speculation(s). Finding/Results: Analysis result states that compared to IFS, MOS fluctuation pattern is more relevant to observation. MOS has higher correlation to observation and lower error. However, the variance of observation value tends to be better represented by IFS. The test result of heavy rain cases prove that the application of MOS is able to provide fairly accurate prediction. This weather prediction will be able to be the basis for decision-making and preventive measure in dealing with extreme condition that may occur.
Downloads
References
Badan Nasional Penanggulangan Bencana, “Infografis Bencana Tahun 2022,” [“Disaster Infographic 2022”], Badan Nasional Penanggulangan Bencana, 2023, [Online]. Available: https://www.bnpb.go.id/infografis/infografis-bencana-tahun-2022. [Accessed: Mar. 7, 2023].
S. Rahmstorf and D. Coumou, “Increase of extreme events in a warming world,” In Proc. National Academy of Sciences, 2011, pp. 17905–17909.
Kiki and F. Alam, “Verifikasi parameter presipitasi akumulasi 24 jam pada model cuaca numerik tahun 2017—2020,” [“Verification of 24-hour accumulated precipitation on numerical weather prediction model year 2017—2020”], Megasains, no. 12, vol. 2, pp. 11—16, Aug. 2021.
J. A. Garcia-Moya, J. L. Casado, I. Martínez, A. Manzao, A. Martín, C. Fernández-Peruchena, M. Gastón. “Deterministic and probabilistic weather forecasting,” Agencia Estatal de Meteorología, Spain, Report PREFLEXMS_DEL_D4.3_20160531_v4, 30 Jul. 2016.
H. R. Glahn and D. A. Lowry, “The use of model output statistics (MOS) in objective weather forecasting,” Journal of Applied Meteorology and Climatology, vol. 11, no. 8, pp. 1203—1211, Dec. 1972.
Nurhayati, “Model output statistic dengan CART dan random forest untuk prakiraan curah hujan harian,” [“Model output statistics in daily rainfall forecasting with CART and random forest”], B. S. thesis, Institut Teknologi Sepuluh November, Surabaya, 2017.
N. Brunet, R. Verret, and N. Yacowar, “An objective comparison of model output statistics and “perfect prog” systems in producing numerical weather element forecasts,” Weather and Forecasting, vol. 3, no. 4, pp. 273—283, Dec. 1988.
Deutscher Wetterdienst, “Model Output Statistics-MIX (MOSMIX),” Deutscher Wetterdienst: Wetter und Klima aus einer Hand, 2015, [Online]. Available: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html. [Accessed: Apr. 7, 2024].
N. Qona’ah, H. Pratiwi, and Y. Susanti, “Model output statistic dengan principal component regression, partial least square regression, dan ridge regression untuk kalibrasi prakiraan cuaca jangka pendek” [“Model output statistics with principal component regression, partial least square regression, and ridge regression in short-term weather forecast callibration”], Jurnal Matematika UNAND, vol. 10, no. 3, pp. 355—368, Jul. 2021.
R. Safitri and Sutikno, “Model output statistics dengan projection pursuit regression untuk meramalkan suhu minimum, suhu maksimum, dan kelembapan” [“Model output statistics with projection pursuit regression to minimum temperature, maximum temperature, and humidity prediction”], Jurnal Sains dan Seni ITS, vol. 1, no. 1, pp. 296–301, Sep. 2012.
J. R. Bocchieri, R. L. Crisci, H. R. Glahn, F. Lewis, and F. T. Globokar, “Recent developments in automated prediction of ceiling and visibility,” Journal of Applied Meteorology, vol. 13, no. 2, pp. 277—288, Mar. 1974.
W. H. Klein and H. R. Glahn, “Forecasting local weather by means of model output statistics,” Bulletin of the American Meteorological Society, vol. 55, no. 10, pp. 1217—1227, Oct. 1974.
R. J. Kuligowski and A. P. Barros, “Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks,” Weather and Forecasting, vol. 13, no. 4, pp. 1194—1204, Dec. 1998.
Badan Penanggulangan Bencana Daerah DKI Jakarta, “Infografis Kejadian Bencana Provinsi DKI Jakarta Tahun 2021,” [“Disaster Infographic in DKI Jakarta Province Year 2021”], Badan Penanggulangan Bencana Daerah DKI Jakarta, 2022, [Online]. Available: https://bpbd.jakarta.go.id/infografis/30/hasil-rekapitulasi-kejadian-bencana-yang-ada-di-dki-jakarta-pada-tahun. [Accessed: Mar. 3, 2023].
Badan Pusat Statistik Jakarta, “Jumlah Penduduk Menurut Kabupaten/Kota di Provinsi DKI Jakarta (Jiwa), 2020-2022,” [“Number of Population by Regency/Municipality in DKI Jakarta Province, 2020-2022”], Badan Pusat Statistik Jakarta, 2021, [Online]. Available: https://jakarta.bps.go.id/indicator/12/1270/1/jumlah-penduduk-menurut-kabupaten-kota-di-provinsi-dki-jakarta-.html. [Accessed: Mar. 1, 2023].
J. R. Holton and G. J. Hakim, “An Introduction to Dynamic Meteorology, 5th ed., Amsterdam, Netherlands: Academic Press, 2013.
V. Bjerknes, “The problem of weather prediction, considered from the view points of mechanics and physics,” Meteorologische Zeitschrift, vol. 18, no.6, pp. 663—667, Dec. 2009.
T. N. Palmer, “Predictability of weather and climate: from theory to practice - from days to decades,” In Proc. ECMWF Workshop on the Use of High Performance Computers in Meteorology ‘10, 2003, pp. 1—29.
J. Flemming, V. Huijnen, J. Arteta, P. Bechtold, A. Beljaars, A. M. Blechschmidt, M. Diamantakis, R. J. Engelen, A. Gaudel, A. Inness, L. Jones, B. Josse, E. Katragkou, V. Marecal, V. H. Peuch, A. Richter, M. G. Schultz, O. Stein, and A. Tsikerdekis, “Tropospheric chemistry in the integrated forecasting system of ECMWF.” Geoscientific Model Development, vol. 8, no. 4, pp. 975—1003, Apr. 2015.
N. Wedi, P. Bauer, W. Deconinck, M. Diamantakis, M. Hamrud, C. Kuehnlein, S. Malardel, K. Mogensen, G. Mozdzynski, and P. Smolarkiewicz, “The modelling infrastructure of the integrated forecasting system: recent advances and future challenges,” European Centre for Medium-Range Weather Forecasts, Reading, UK, Tech. Memorandum. 760, Nov. 2015.
F. M. Lopes, R. Conceição, H. G. Silva, T. Fasquelle, R. Salgado, P. Canhoto, and M. Collares-Pereira, “Short-term forecasts of dni from an integrated forecasting system (ECMWF) for optimized operational strategies of a central receiver system,” Energies, vol. 12, no. 7, pp. 1—18, Apr. 2019.
European Centre for Medium-Range Weather Forecasts, “ECMWF IFS CY41r2 High-Resolution Operational Forecasts,” UCAR/NCAR - Research Data Archive, 2016, [Online]. Available: http://rda.ucar.edu/datasets/ds113.1/. [Accessed: Feb. 15, 2023].
European Centre for Medium-Range Weather Forecasts, “Operational Configurations of the ECMWF Integrated Forecasting System (IFS),” UCAR/NCAR - Research Data Archive, 2016, [Online]. Available: https://confluence.ecmwf.int/pages/viewpage.action?pageId=324860211. [Accessed: Feb. 15, 2023].
G. E. P. Box, G. M. Jenkins, G. C. Reinsel, G. M. Ljung. Time Series Analysis: Forecasting and Control, 5th ed., Hoboken, NJ: Wiley, 2015.