Small Area Estimation Approaches Using Satellite Imageries Auxiliary Data for Estimating Per Capita Expenditure in West Java, Indonesia
DOI:
https://doi.org/10.34123/jurnalasks.v16i2.799Keywords:
EBLUP, Expenditure per Capita, SAE, Remote Sensing, NTLAbstract
Introduction/Main Objectives: The economy of a country can determine the welfare of its people. One of the economic indicators in Indonesia is per capita expenditure, which has the lowest estimation at the district level. Background Problems: Sub-district level estimates provide detailed information on inequality that cannot be explained at the district level. Unfortunately, sub-district level estimates of per capita expenditure in Indonesia have poor Relative Standard Error (RSE) values. Research Method: The Small Area Estimation (SAE) method can improve estimator accuracy on small samples by using auxiliary variable information. Novelty: The existence of big geospatial data such as remote sensing provides an advantage in the efficient use of auxiliary variables. Finding Result: The Empirical Best Linear Unbiased Prediction (EBLUP) model using Nighttime Light Intensity (NTL) as an auxiliary variable provides the best results of the five proposed models. Remote sensing data can potentially be used in SAE auxiliary variables.
Downloads
References
(BPS) Badan Pusat Statistik, “Konsumsi dan Pengeluaran,” Konsumsi dan Pengeluaran [Consumption and Expenditure]. Accessed: Nov. 30, 2023. [Online]. Available: https://www.bps.go.id/subject/5/konsumsi-dan-pengeluaran.html
(BPS) Badan Pusat Statistik, “Ekonomi Indonesia 2018 Tumbuh 5,17 Persen,” Ekonomi Indonesia 2018 Tumbuh 5,17 Persen [Indonesia's 2018 Economy grew 5.17 Percent]. Accessed: Nov. 30, 2023. [Online]. Available: https://www.bps.go.id/pressrelease/2019/02/06/1619/ekonomi-indonesia-2018-tumbuh-5-17-persen.html
(BPS) Badan Pusat Statistik, “Statistik Indonesia 2018,” Statistik Indonesia 2018 [Statistics Indonesia 2018]. Accessed: Nov. 30, 2023. [Online]. Available: https://www.bps.go.id/publication/2018/07/03/5a963c1ea9b0fed6497d0845/statistik-indonesia-2018.html
Badan Pusat Statistik, PEDOMAN KEPALA BPS PROVINSI, STATISTISI AHLI MADYA/KOORDINATOR FUNGSI STATISTIK SOSIAL BPS PROVINSI, DAN KEPALA BPS KABUPATEN/KOTA SUSENAS MARET 2022 [GUIDELINES FOR THE HEAD OF THE PROVINCIAL BPS, INTERMEDIATE EXPERT STATISTICIAN/COORDINATOR OF THE SOCIAL STATISTICS FUNCTION OF THE PROVINCIAL BPS, AND THE HEAD OF THE DISTRICT / CITY BPS SUSENAS MARCH 2022]. Badan Pusat Statistik, 2022.
J. N. K. Rao and I. Molina, Small area estimation, Second edition. in Wiley series in survey methodology. Hoboken, New Jersey: John Wiley & Sons, Inc, 2015.
D. T. Lindgren, Land use planning and remote sensing. in Remote sensing of earth resources and environment, no. 2. Dordrecht?; Boston?: Hingham, MA, USA: M. Nijhoff Publishers?; Distributors for the U.S. and Canada, Kluwer Academic Pub, 1985.
S. Hutasavi and D. Chen, “Estimating District-Level Electricity Consumption Using Remotely Sensed Data in Eastern Economic Corridor, Thailand,” Remote Sensing, vol. 13, no. 22, p. 4654, Nov. 2021, doi: 10.3390/rs13224654.
S. R. Putri, A. W. Wijayanto, and A. D. Sakti, “Developing Relative Spatial Poverty Index Using Integrated Remote Sensing and Geospatial Big Data Approach: A Case Study of East Java, Indonesia,” IJGI, vol. 11, no. 5, p. 275, Apr. 2022, doi: 10.3390/ijgi11050275.
S. Shi, Y. Ye, and R. Xiao, “Evaluation of Food Security Based on Remote Sensing Data—Taking Egypt as an Example,” Remote Sensing, vol. 14, no. 12, p. 2876, Jun. 2022, doi: 10.3390/rs14122876.
M. Xie, N. Jean, M. Burke, D. Lobell, and S. Ermon, “Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping,” AAAI, vol. 30, no. 1, Mar. 2016, doi: 10.1609/aaai.v30i1.9906.
J. Yin, Y. Qiu, and B. Zhang, “Identification of Poverty Areas by Remote Sensing and Machine Learning: A Case Study in Guizhou, Southwest China,” IJGI, vol. 10, no. 1, p. 11, Dec. 2020, doi: 10.3390/ijgi10010011.
S. R. Putri, A. W. Wijayanto, and S. Pramana, “Multi-source satellite imagery and point of interest data for poverty mapping in East Java, Indonesia: Machine learning and deep learning approaches,” Remote Sensing Applications: Society and Environment, vol. 29, p. 100889, Jan. 2023, doi: 10.1016/j.rsase.2022.100889.
S. Ahmed, “Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques,” The Egyptian Journal of Remote Sensing and Space Science, vol. 21, no. 1, pp. 15–25, Apr. 2018, doi: 10.1016/j.ejrs.2017.08.001.
Y. Zheng, Q. Zhou, Y. He, C. Wang, X. Wang, and H. Wang, “An Optimized Approach for Extracting Urban Land Based on Log-Transformed DMSP-OLS Nighttime Light, NDVI, and NDWI,” Remote Sensing, vol. 13, no. 4, p. 766, Feb. 2021, doi: 10.3390/rs13040766.
Y. Sun, S. Wang, X. Zhang, T. O. Chan, and W. Wu, “Estimating local-scale domestic electricity energy consumption using demographic, nighttime light imagery and Twitter data,” Energy, vol. 226, p. 120351, Jul. 2021, doi: 10.1016/j.energy.2021.120351.
L. Lin, L. Di, C. Zhang, L. Guo, and Y. Di, “Remote Sensing of Urban Poverty and Gentrification,” Remote Sensing, vol. 13, no. 20, p. 4022, Oct. 2021, doi: 10.3390/rs13204022.
G. E. Battese, R. M. Harter, and W. A. Fuller, “An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data,” Journal of the American Statistical Association, vol. 83, no. 401, pp. 28–36, Mar. 1988, doi: 10.1080/01621459.1988.10478561.
R. Singh, D. P. Semwal, A. Rai, and R. S. Chhikara, “Small area estimation of crop yield using remote sensing satellite data,” International Journal of Remote Sensing, vol. 23, no. 1, pp. 49–56, Jan. 2002, doi: 10.1080/01431160010014756.
G. F. Santoso and S. Muchlisoh, “Estimasi Produktivitas Padi Level Kecamatan di Kabupaten Tulungagung Menggunakan Geoadditive SAE” [Sub-district Level Rice Productivity Estimation in Tulungagung Regency Using Geoadditive SAE], asks, vol. 12, no. 3, pp. 23–36, Mar. 2022, doi: 10.34123/jurnalasks.v14i1.385.
N. T. Longford, M. G. Pittau, R. Zelli, and R. Massari, “Poverty and inequality in European regions,” Journal of Applied Statistics, vol. 39, no. 7, pp. 1557–1576, Jul. 2012, doi: 10.1080/02664763.2012.661705.
T. Siswantining, “GEOINFORMATIKA PADA KASUS AREA KECIL DAN PENERAPANNYA UNTUK MENDETEKSI KANTONG- KANTONG KEMISKINAN DI JEMBER” [GEOINFORMATICS IN THE CASE OF SMALL AREAS AND ITS APPLICATION TO DETECT POCKETS OF POVERTY IN JEMBER], Institute Pertanian Bogor Pasca Sarjana Statistika, 2013.
N. Istiana, “SMALL AREA ESTIMATION WITH EXCESS ZERO (CASE STUDY: INFANT MORTALITY RATE IN JAVA ISLAND),” asks, vol. 13, no. 1, pp. 25–34, Sep. 2021, doi: 10.34123/jurnalasks.v13i1.270.
S. Guha and H. Chandra, “Measuring disaggregate level food insecurity via multivariate small area modelling: evidence from rural districts of Uttar Pradesh, India,” Food Sec., vol. 13, no. 3, pp. 597–615, Jun. 2021, doi: 10.1007/s12571-021-01143-1.
Md. J. Hossain, S. Das, H. Chandra, and M. A. Islam, “Disaggregate level estimates and spatial mapping of food insecurity in Bangladesh by linking survey and census data,” PLoS ONE, vol. 15, no. 4, p. e0230906, Apr. 2020, doi: 10.1371/journal.pone.0230906.
P. A. Kaban, B. I. Nasution, R. E. Caraka, and R. Kurniawan, “Implementing night light data as auxiliary variable of small area estimation,” Communications in Statistics - Theory and Methods, pp. 1–18, May 2022, doi: 10.1080/03610926.2022.2077963.
A. Ubaidillah, K. A. Notodiputro, A. Kurnia, and I. W. Mangku, “Multivariate Fay-Herriot models for small area estimation with application to household consumption per capita expenditure in Indonesia,” Journal of Applied Statistics, vol. 46, no. 15, pp. 2845–2861, Nov. 2019, doi: 10.1080/02664763.2019.1615420.
A. Asian Development Bank, “How Nighttime Lights Help Us Study Development Indicators | Asian Development Blog,” How Nighttime Lights Help Us Study Development Indicators. Accessed: Nov. 04, 2024. [Online]. Available: https://blogs.adb.org/blog/how-nighttime-lights-help-us-study-development-indicators
R. Beyer, J. Yao, and Y. Hu, “Measuring Quarterly Economic Growth from Outer Space,” IMF Working Papers, vol. 2022, no. 109, p. 1, Jun. 2022, doi: 10.5089/9798400211553.001.
S. Yu et al., “Land Surface Temperature Changes in Different Urbanization Increments in China since 2000,” Land, vol. 13, no. 4, p. 417, Mar. 2024, doi: 10.3390/land13040417.
M. H. Kutner, Ed., Applied linear statistical models, 5th ed. in The McGraw-Hill/Irwin series operations and decision sciences. Boston: McGraw-Hill Irwin, 2005.
Q. Zhang and K. C. Seto, “Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data,” Remote Sensing of Environment, vol. 115, no. 9, pp. 2320–2329, Sep. 2011, doi: 10.1016/j.rse.2011.04.032.
S. P. Subash, R. R. Kumar, and K. S. Aditya, “Satellite data and machine learning tools for predicting poverty in rural India,” Agri. Econ. Rese. Revi., vol. 31, no. 2, p. 231, 2018, doi: 10.5958/0974-0279.2018.00040.X.
Md. Bodruddoza Mia, Rahul Bhattacharya, and ASM Woobaidullah, “Correlation and Monitoring of Land Surface Temperature, Urban Heat Island with Land use-land cover of Dhaka City using Satellite imageries,” International Journal of Research in Geography, vol. 3, no. 4, 2017, doi: 10.20431/2454-8685.0304002.