Estimation of Gross Regional Domestic Product per Capita at the Sub-District Level in Bali, NTB, and NTT Provinces Using Machine Learning Approaches and Geospatial Data
DOI:
https://doi.org/10.34123/jurnalasks.v17i1.803Keywords:
Big Data Geospatial, Gross Regional Domestic Product Per Capita, Machine Learning, Neural Network, Williamson IndexAbstract
Introduction/Main Objectives: This study aims to estimate Gross Regional Domestic Product (GRDP) per capita at the sub-district level. Background Problems: Currently, GRDP per capita is calculated only at the district level by BPS. Novelty: This study estimates GRDP per capita at the sub-district level using a model developed at the district level, applying machine learning and linear regression methods. Research Methods: The model was constructed using geospatial data sourced from satellite imagery, OpenStreetMap, (Village Potential Statistics) PODES, directories of large mining companies, and directories of the manufacturing industry at the district level. Linear regression and machine learning methods, including neural networks, random forest regression, and support vector regression, were used to develop the model. The research focuses on three provinces: Bali, West Nusa Tenggara (NTB), and East Nusa Tenggara (NTT). Findings/Results: The best-performing model was support vector regression, with MAE and MAPE evaluations of 10.33 million and 26.11%, respectively. The results indicate that sub-districts with high GRDP per capita are typically urban areas that serve as economic hubs. The Williamson Index results show that districts in the eastern region have higher inequality levels compared to those in the western region.
Downloads
References
BPS, Gross Domestic Product of Indonesia by Expenditure 2019-2023. Jakarta: Badan Pusat Statistik, 2024.
M. Nasution, "Ketimpangan Antar Wilayah & Hubungannya dengan Belanja Pemerintah: Studi di Indonesia [Regional Disparities & Their Relationship with Government Spending: A Study in Indonesia]," J. budg., vol. 5, no. 2, pp. 84–102, Nov. 2020, doi: 10.22212/jbudget.v5i2.101.
Dinas Komunikasi dan Informatika Kota Depok, Indikator Ekonomi Kecamatan Kota Depok 2018 [Economic Indicators of Subdistricts in Depok City, 2018], 2019.
R. Capello, "Regional Economics, 0 ed." Routledge, 2015. doi: 10.4324/9781315720074.
N. M. Coe, P. F. Kelly, and H. W.-C. Yeung, Economic geography: a contemporary introduction, Third edition. Hoboken, NJ: Wiley-Blackwell, 2020.
BPS Kab. Sleman, Produk Domestik Regional Bruto Kecamatan di Kabupaten Sleman 2016 [Gross Regional Domestic Product of Subdistricts in Sleman Regency, 2016], Kabupaten Sleman: Sleman: Badan Pusat Statistik Kabupaten Sleman, 2016.
Sjafrizal, Ekonomi wilayah dan perkotaan, Cetakan ke-1 [Regional and Urban Economy, 1st Edition], Jakarta: PT RajaGrafindo Persada, 2012.
BPS Provinsi Jawa Tengah, Analisis Indeks Williamson Provinsi Jawa Tengah 2017-2021 [Analysis of the Williamson Index in Central Java Province, 2017-2021], Jawa Tengah: Semarang: Badan Pusat Statistik Jawa Tengah, 2021.
S. Pratama, "Prediksi Harga Tanah Menggunakan Algoritma Linear Regression [Land Price Prediction Using the Linear Regression Algorithm]," Technologia, vol. 7, no. 2, Jun. 2016, doi: 10.31602/tji.v7i2.624.
V. L. Delimah Pasaribu et al., "Forecast Analysis of Gross Regional Domestic Product based on the Linear Regression Algorithm Technique," TEM Journal, pp. 620–626, May 2021, doi: 10.18421/TEM102-17.
S. C. Agu, F. U. Onu, U. K. Ezemagu, and D. Oden, "Predicting gross domestic product to macroeconomic indicators," Intelligent Systems with Applications, vol. 14, p. 200082, May 2022, doi: 10.1016/j.iswa.2022.200082.
T. M. H. Hope, "Linear regression, in Machine Learning," Elsevier, 2020, pp. 67–81. doi: 10.1016/B978-0-12-815739-8.00004-3.
N. Puttanapong, N. Prasertsoong, and W. Peechapat, "Predicting Provincial Gross Domestic Product Using Satellite Data and Machine Learning Methods: A Case Study of Thailand," Asian Development Review, vol. 40, no. 02, pp. 39–85, Sep. 2023, doi: 10.1142/S0116110523400024.
N. D. Muchisha, N. Tamara, A. Andriansyah, and A. M. Soleh, "Nowcasting Indonesia’s GDP Growth Using Machine Learning Algorithms," IJSA, vol. 5, no. 2, pp. 355–368, Jun. 2021, doi: 10.29244/ijsa.v5i2p355-368.
A. Richardson, T. Van Florenstein Mulder, and T. Vehbi, "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, vol. 37, no. 2, pp. 941–948, Apr. 2021, doi: 10.1016/j.ijforecast.2020.10.005.
S. Sa’adah and M. S. Wibowo, "Prediction of Gross Domestic Product (GDP) in Indonesia Using Deep Learning Algorithm, in 2020 3rd International Seminar," Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia: IEEE, Dec. 2020, pp. 32–36. doi: 10.1109/ISRITI51436.2020.9315519.
H. Lai, "A comparative study of different neural networks in predicting gross domestic product," Journal of Intelligent Systems, vol. 31, no. 1, pp. 601–610, May 2022, doi: 10.1515/jisys-2022-0042.
J. Saputra, B. Subartini, J. H. F. Purba, S. Supian, and Y. Hidayat, An Application of Genetic Algorithm Approach and Cobb-Douglas Model for Predicting the Gross Regional Domestic Product by Expenditure-Based in Indonesia, 2019.
A. F. Syah, "Penginderaan Jauh dan Aplikasinya di Wilayah Pesisir dan Lautan [Remote Sensing and Its Applications in Coastal and Marine Areas]," Jurnal Kelautan, vol. 3, pp. 18–28, 2010.
Z. Wang et al., "Exploring the Potential of OpenStreetMap Data in Regional Economic Development Evaluation Modeling," Remote Sensing, vol. 16, no. 2, p. 239, Jan. 2024, doi: 10.3390/rs16020239.
K. Faisal and A. Shaker, "The Use of Remote Sensing Technique to Predict Gross Domestic Product (GDP): An Analysis of Built-Up Index and GDP in Nine Major Cities in Canada," Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XL–7, pp. 85–92, Sep. 2014, doi: 10.5194/ isprsarchives-XL-7-85-2014.
S. R. Putri, A. W. Wijayanto, and S. Pramana, "Multi-source satellite imagery and point of interest data for poverty mapping in East Java, Indonesia: Machine learning and deep learning approaches," ScienceDirect, Accessed: Jul. 04, 2024. [Online]. Available: https://www.sciencedirect.com/ science/article/abs/pii/S2352938522001975
BPS Kab. Musi Rawas, Produk Domestik Regional Bruto Kabupaten Musi Rawas Menurut Pengeluaran 2016-2020 [Gross Regional Domestic Product of Musi Rawas Regency by Expenditure, 2016-2020], Kabupaten Musi Rawas: Musi Rawas: Badan Pusat Statistik Kabupaten Musi Rawas, 2021.
BPS Kab. Badung, Produk Domestik Regional Bruto Kabupaten Badung Menurut Lapangan Usaha [Gross Regional Domestic Product of Badung Regency by Business Sector], Kabupaten Badung: Badung: Badan Pusat Statistik Kabupaten Badung, 2022.
M. Urbac, A. Junaidi, M. Syukur, N. Nurhamidah, and R. Ferial, "Kajian Aspek Geospasial Untuk Percepatan Pembangunan dan Pemberdayaan Desa Binaan Kota Padang [Study of Geospatial Aspects for Accelerating Development and Empowering Fostered Villages in Padang City]," JLBI, vol. 12, no. 4, pp. 198–204, Dec. 2023, doi: 10.32315/jlbi.v12i4.83.
D. Reynard, "Five Classes of Geospatial Data and The Barriers to Using Them," Geography Compass, vol. 12, no. 4, p. e12364, Apr. 2018, doi: 10.1111/gec3.12364.
P. Pan, R. Li, and Y. Zhang, "Predicting punching shear in RC interior flat slabs with steel and FRP reinforcements using Box-Cox and Yeo-Johnson transformations," Case Studies in Construction Materials, vol. 19, p. e02409, Dec. 2023, doi: 10.1016/j.cscm.2023.e02409.
B. T. Suryanto, A. A. Imron, and D. A. R. Prasetyo, "The Correlation between Students Vocabulary Mastery and Speaking Skill," ijoeel, vol. 3, no. 1, pp. 10–19, Jun. 2021, doi: 10.33650/ijoeel.v3i1, 2042.
G. Zeng, "A Unified Definition of Mutual Information with Applications in Machine Learning," Mathematical Problems in Engineering, vol. 2015, pp. 1–12, 2015, doi: 10.1155/2015/201874.
P. Laarne, M. A. Zaidan, and T. Nieminen, "ennemi: Non-linear correlation detection with mutual information," SoftwareX, vol. 14, p. 100686, Jun. 2021, doi: 10.1016/j.softx.2021.100686.
J. Zhao, Y. Zhou, X. Zhang, and L. Chen, "Part mutual information for quantifying direct associations in networks," Proc. Natl. Acad. Sci. U.S.A., vol. 113, no. 18, pp. 5130–5135, May 2016, doi: 10.1073/pnas.1522586113.
N. Shrestha, "Detecting Multicollinearity in Regression Analysis," AJAMS, vol. 8, no. 2, pp. 39–42, Jun. 2020, doi: 10.12691/ajams-8-2-1.
M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," Science, vol. 349, no. 6245, pp. 255–260, Jul. 2015, doi: 10.1126/science.aaa8415.
I. Cholissodin, Buku Ajar AI, Machine Learning & Deep Learning [AI, Machine Learning & Deep Learning textbook], Malang: Malang: Filkom Universitas Brawijaya, 2020.
P.-C. Chang, Y.-W. Wang, and C.-H. Liu, "The development of a weighted evolving fuzzy neural network for PCB sales forecasting," Expert Systems with Applications, pp. 86–96, 2007.