Generalized Multilevel Linear Model dengan Pendekatan Bayesian untuk Pemodelan Data Pengeluaran Perkapita Rumah Tangga

Authors

  • Azka Ubaidillah Politeknik Statistika STIS, Jakarta
  • Anang Kurnia Departemen Statistika, Institut Pertanian Bogor, Bogor
  • Kusman Sadik Departemen Statistika, Institut Pertanian Bogor, Bogor

DOI:

https://doi.org/10.34123/jurnalasks.v9i1.91

Keywords:

Generalized Multilevel Linear Model, LL3P, LN3P, MCMC, Household per capita expenditure

Abstract

Household per capita expenditure data is one of the important information as an approach to measure the level of prosperity in an area. Such data is needed by the government, both at the central and regional levels in formulating, implementing and evaluating the implementation of development programs. This research is aimed at modeling the household per capita expenditure data which takes into account the specificity of BPS data which has a hierarchical structure, and data distribution pattern which has the right skewed characteristic. The modeling is done by using the three parameters of Log-normal distribution (LN3P) and the three parameters of Log-logistics (LL3P) with a single level (unilevel) and two levels (multilevel) structure. The parameter estimation process is done by Markov Chain Monte Carlo (MCMC) method and Gibbs Sampling algorithm. The results showed that on the unilevel model, the LL3P model is better than the LN3P model. While in multilevel model, LN3P model is better than LL3P model. The results also show that the best model for modeling household per capita expenditure data is the LN3P multilevel model with the smallest Deviance Information Criterion (DIC) value.

Downloads

Download data is not yet available.

References

Anderson, T.W. dan Darling, D.A. 1954. A test Goodness of Fit. Journal of American Statistical Association, Volume 49, Issue 268, hal. 765-769.
Anderson, T.W. dan Darling, D.A .1952. Asymptotic Theory of Certain “Goodness of Fit” Criteria Based on stochastic Process. The Annals of Mathematical Statistics, Vol. 23, No. 2, hal. 193-212.
Anderson, W., dan Wells, M.T. 2010. A Bayesian Hierarchical Regression Approach to Clustered and Longitudinal Data in Empirical Legal Studies. Journal of Empirical Legal Studies, Volume 7, Issue 4, hal. 634-663.
Boldstad, W.M. 2007. Introduction to Bayesian Statistics. 2nd Edition. Wiley, New Jersey.
Box, G.E.P. dan Tiao, G.C. 1973. Bayesian Inference in Statistical Analysis. John Willey And Sons, Inc : New York.
BPS Kota Jambi. 2011. Kota Jambi Dalam Angka 2011. Badan Pusat Statistik Kota Jambi, Provinsi Jambi.
Carlin, B.P. 1992. A SimpleMonte Carlo Approach to Bayesian Graduation. Transactions of the Society of Actuaries XLIV, hal. 55–76.
Carlin, B. P. dan Chib, S. 1995. Bayesian model choice via Markov Chain Monte Carlo methods. Journal of the Royal Statistical Society, Ser. B. Vol.57 No.3, hal.473–484.
De Leeuw, J. dan Kreft, I. 2006. Random Coefficient Models for Multilevel Analysis. Departement of Statistics Paper. Departement of Statistics, UCLA, Los Angeles. http://preprints.stat.ucla.edu/496/dLK_jes.pdf (19 Juli 2010).
Dobson, A.J. 2002. An Introduction to Generalized Linear Models, Second Edition. Chapman & Hall, London
Gelman, A., dan Hill, J. 2006. Data Analysis Using Regression and Multilevel / Hierarchical Models. Cambridge University Press.
Goldstein, H. 1995. Multilevel Statistical Models. 2nd edition. Arnold, London. ISBN-10: 111995682X, hal. 382.
Ha, I.D., dan Lee. Y. 2005. Multilevel Mixed Linear Models for Survival Data. Lifetime Data Analysis, 11, hal. 131-142.
Hox, J.J. 1995. Applied Multilevel Analysis, 1st edition, TT-Publikaties, Amsterdam, hal. 119.
Iriawan, N. 2012. Pemodelan dan Analisis Data Driven. ITS Press : Surabaya.
Ismartini, P., Iriawan, N., Setiawan, dan Ulama, B.S.S. 2012. Toward a Hierarchical Bayesian Framework for Modelling the Effect of Regional Diversity on Household Expenditure. Journal of Mathematics and Statistics, Vol.8, No.2, hal. 283-291.
Kaashoek, J.F. dan Van Dijk, H.K. 2002. Neural Network Pruning Applied to Real Exchange Rate Analysis. Journal of Forecasting, 21, pp. 559-577.
McCullagh, P., dan Nelder, J.A. 1989. Generalized Linear Models, Second Edition. Chapman & Hall, London
Raudenbush, S.W. dan A.S. Bryk. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods. 2nd edition. Sage Publications, Thousand Oaks. ISBN-10: 076191904X, hal. 485.
Scollnik, D. P. M. 2011. An Introduction To Markov Chain Monte Carlo Methods And Their Actuarial Applications. Handbook of Markov Chain Monte Carlo Chapter 1, hal.114-165 : Chapman & Hall/CRC Handbooks of Modern Statistical Method.
Steenbergen, M. R., dan Jones, B. S. 2002. Modelling Multilevel Data Structure. American Journal of Political Science, Vol. 46, No. 1, hal. 218-237.
Tailor, H.M., dan Carlin, S. 1998. An Introduction to Stochastic Modelling 3rd edition. Academic Press, San Diego.
Zimmer, Z., Wen, M., dan Kaneda, T. 2010. A Multi-Level Analysis of Urban/Rural and Socioeconomic Differences in Functional Health Status Transition among Older Chinese. Social Science & Medicine 71, hal. 559-567.

Published

2017-06-30

How to Cite

Ubaidillah, A., Kurnia, A., & Sadik, K. (2017). Generalized Multilevel Linear Model dengan Pendekatan Bayesian untuk Pemodelan Data Pengeluaran Perkapita Rumah Tangga. Jurnal Aplikasi Statistika & Komputasi Statistik, 9(1), 12. https://doi.org/10.34123/jurnalasks.v9i1.91