Estimating Economic Activity Using Geospatial Big Data in East Java, Indonesia: Relative Spatial GDP Index Approach

Authors

  • Rifqi Ramadhan BPS-Statistics Indonesia, Jakarta, Indonesia
  • I Made Satria Ambara BPS-Statistics Kotawaringin Barat Regency, Indonesia
  • Taufiq Agung Kurniawan BPS-Statistics Dharmasraya Regency, Indonesia
  • Fitri Kartiasih Politeknik Statistika STIS, Jakarta, Indonesia
  • Raden Muaz Munim Department of Computer Science, Hamad Bin Khalifa University, Qatar
  • Somethea Buoy Department of the Statistical Information Services, National Institute of Statistics, Ministry of Planning, Cambodia

DOI:

https://doi.org/10.34123/jurnalasks.v17i2.856

Keywords:

East Java, Geospatial Big Data, GRDP, Relative Spatial GDP Index, Remote Sensing, Robust Regression

Abstract

Introduction/Main Objectives: GRDP serves as a fundamental indicator for assessing regional economic performance in Indonesia and plays a critical role in development planning. Background Problems: Conventional GRDP measurement in Indonesia relies on survey-based approaches, which are time-consuming, costly, and provide limited spatial detail. Novelty: This study introduces a Relative Spatial GDP Index (RSGI) constructed from geospatial big data such as remote sensing and point of interest (POI) to estimate GRDP more granular in East Java. This approach represents the first geospatial data driven GRDP index developed at such fine spatial resolution in Indonesia. Research Methods: Four weighting schemes were applied to generate RSGI variations, which were then evaluated through regression modeling against official GRDP. They are equal weight, pearson correlation, spearman correlation, and principal component analysis (PCA). Finding/Results: The RSGI PCA produced the best performance (RMSE = 0.73047; MAE = 0.48185; MAPE = 7.00%; R² = 0.7618). PCA weight outperformed other weight by capturing shared variance and generating objective weights that better represent spatial economic intensity. The RSGI PCA demonstrates a strong and significant correlation with GRDP at the sub-district level and provides a robust tool for fine-scale economic estimation.

Downloads

Download data is not yet available.

References

Bappenas, "Rancangan teknokratik rencana pembangunan jangka menengah nasional (RPJMN) 2020-2024," Kementrian Perenc. Pembang. Nas., pp. 2015-2019, 2019.

Badan Pusat Statistik, "Pertumbuhan ekonomi indonesia triwulan IV-2022," Badan Pusat Statistik, 2023. .

BPS Jawa Timur, "Produk domestik regional bruto provinsi Jawa Timur menurut lapangan usaha 2018-2022," Badan Pusat Statistik Provinsi Jawa Timur, 2023. .

Badan Pusat Statistik, "Indikator perumahan dan kesehatan lingkungan," Badan Pusat Statistik, 2022. .

Q. Chen et al., "Mapping China's regional economic activity by integrating points-of-interest and remote sensing data with random forest," Environ. Plan. B Urban Anal. City Sci., vol. 48, no. 7, pp. 1876-1894, 2021, doi: 10.1177/2399808320951580.

Y. Zhou, T. Ma, C. Zhou, and T. Xu, "Nighttime light derived assessment of regional Inequality of socioeconomic development in China," pp. 1242-1262, 2015, doi: 10.3390/rs70201242.

Y. Lu and N. C. Coops, "Bright lights, big city: Causal effects of population and GDP on urban brightness," PLoS One, vol. 13, no. 7, pp. 1-15, 2018, doi: 10.1371/journal.pone.0199545.

J. A. Pagaduan, "Do higher-quality nighttime lights and net primary productivity predict subnational GDP in developing countries? Evidence from the Philippines," Asian Econ. J., vol. 36, no. 3, pp. 288-317, 2022, doi: 10.1111/asej.12278.

G. C. McCord and M. Rodriguez-Heredia, "Nightlights and subnational economic activity: estimating departmental GDP in Paraguay," Remote Sens., vol. 14, no. 5, pp. 1-16, 2022, doi: 10.3390/rs14051150.

Y. Gu, Z. Shao, X. Huang, and B. Cai, "GDP forecasting model for China's provinces using nighttime light remote sensing data," Remote Sens., vol. 14, no. 15, 2022, doi: 10.3390/rs14153671.

X. M. Jin, L. Wan, Y. K. Zhang, and M. Schaepman, "Impact of economic growth on vegetation health in China based on GIMMS NDVI," Int. J. Remote Sens., vol. 29, no. 13, pp. 3715-3726, 2008, doi: 10.1080/01431160701772542.

W. Li, J. D. M. Saphores, and T. W. Gillespie, "A comparison of the economic benefits of urban green spaces estimated with NDVI and with high-resolution land cover data," Landsc. Urban Plan., vol. 133, pp. 105-117, 2015, doi: 10.1016/j.landurbplan.2014.09.013.

M. Hu and B. Xia, "A significant increase in the normalized difference vegetation index during the rapid economic development in the Pearl River Delta of China," L. Degrad. Dev., vol. 30, no. 4, pp. 359-370, 2019, doi: 10.1002/ldr.3221.

Y. Guo et al., "Spatial and temporal changes in vegetation in the Ruoergai Region, China," Forests, vol. 12, no. 1, pp. 1-17, 2021, doi: 10.3390/f12010076.

G. Wang and W. Peng, "Detecting influences of factors on GDP density differentiation of rural poverty changes," Struct. Chang. Econ. Dyn., vol. 56, pp. 141-151, 2021, doi: 10.1016/j.strueco.2020.10.004.

Z. M. Fan, X. Y. Bai, and N. Zhao, "Explicating the responses of NDVI and GDP to the poverty alleviation policy in poverty areas of China in the 21st century," PLoS One, vol. 17, no. 8 August, pp. 1-16, 2022, doi: 10.1371/journal.pone.0271983.

H. W. Duolaiti, X., Kasim, A., Reheman, R., & Laing, "Water body extraction of Ebinur Lake based on four water indexes and analysis of spatial-temporal changes," J. Yangtze River Sci. Res. Inst., 2022.

S. Ahmed, "Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques," Egypt. J. Remote Sens. Sp. Sci., vol. 21, no. 1, pp. 15-25, 2018, doi: 10.1016/j.ejrs.2017.08.001.

A. D. Sakti et al., "School location analysis by integrating the accessibility, natural and biological hazards to support equal access to education," ISPRS Int. J. Geo-Information, vol. 11, no. 1, 2022, doi: 10.3390/ijgi11010012.

X. Zhang et al., "Long-term trends in NO2 columns related to economic developments and air quality policies from 1997 to 2016 in China," Sci. Total Environ., vol. 639, no. 2, pp. 146-155, 2018, doi: 10.1016/j.scitotenv.2018.04.435.

A. Sinha, "Trilateral association between SO2/NO2 emission, inequality in energy intensity, and economic growth: A case of Indian cities," Atmos. Pollut. Res., vol. 7, no. 4, pp. 647-658, 2016, doi: 10.1016/j.apr.2016.02.010.

D. Dissanayake, T. Morimoto, Y. Murayama, M. Ranagalage, and H. H. Handayani, "Impact of urban surface characteristics and socio-economic variables on the spatial variation of land surface temperature in Lagos City, Nigeria," Sustain., vol. 11, no. 1, pp. 1-23, 2019, doi: 10.3390/su11010025.

M. Khal, A. Algouti, A. Algouti, N. Akdim, S. A. Stankevich, and M. Menenti, "Evaluation of open digital elevation models: estimation of topographic indices relevant to erosion risk in the Wadi M'Goun watershed, Morocco," AIMS Geosci., vol. 6, no. 2, pp. 231-257, 2020, doi: 10.3934/geosci.2020014.

Q. Chen et al., "Mapping China ' s regional economic activity by integrating points-of-interest and remote sensing data with random forest," vol. 0, no. 0, pp. 1-19, 2020, doi: 10.1177/2399808320951580.

H. Liu et al., "Erratum to: Nightlight as a proxy of economic indicators: Fine-grained GDP inference around Chinese mainland via attention-augmented CNN from daytime satellite imagery (Remote SENS. 2021, 13, 2067)," Remote Sens., vol. 13, no. 17, 2021, doi: 10.3390/rs13173360.

Z. Chen, W. Wang, H. Zong, and X. Yu, "Combining the NPP-VIIRS-like dataset and sentinel-2 images," 2024.

N. Wu, J. Yan, D. Liang, Z. Sun, R. Ranjan, and J. Li, "High-resolution mapping of GDP using multi-scale feature fusion by integrating remote sensing and POI data," Int. J. Appl. Earth Obs. Geoinf., vol. 129, no. April, p. 103812, 2024, doi: 10.1016/j.jag.2024.103812.

Badan Pusat Statistik Provinsi Jawa Timur, "Produk domestik regional bruto Provinsi Jawa Timur menurut lapangan usaha 2018-2022," Badan Pusat Statistik Jawa Timur, 2023. .

A. De Mauro, M. Greco, and M. Grimaldi, "What is big data? A consensual definition and a review of key research topics," AIP Conf. Proc., vol. 1644, pp. 97-104, 2015, doi: 10.1063/1.4907823.

J. G. Lee and M. Kang, "Geospatial big data: Challenges and opportunities," Big Data Res., vol. 2, no. 2, pp. 74-81, 2015, doi: 10.1016/j.bdr.2015.01.003.

BPS RI, Teknik pengumpulan data dan preprocessing citra satelit. Badan Pusat Statistik, 2022.

R. A. Schowengerdt, Remote sensing. Elsevier, 2007.

J. B. Campbell, Introduction to remote sensing. Guilford Press, 2011.

G. K. Moore, "What is a picture worth? a history of remote sensing," Hydrol. Sci. Bull., vol. 24, no. 4, pp. 477-485, 1979, doi: 10.1080/02626667909491887.

N. Suwargana, "Temporal dan spektral pada citra satelit landsat, spot Dan ikonos," J. Ilm. Widya, vol. 1, no. 2, pp. 167-174, 2013.

A. F. Syah, "Penginderaan jauh dan aplikasinya di wilayah pesisir dan lautan," J. Kelaut., vol. 3, no. 1, pp. 18-28, 2010.

A. Oktaviani and Y. Johan, "Perbandingan resolusi spasial, temporal dan radiometrik serta kendalanya," J. Enggano, vol. 1, no. 2, pp. 74-79, 2016, doi: 10.31186/jenggano.1.2.74-79.

C. D. Elvidge, M. Zhizhin, F.-C. Hsu, and K. Baugh, "What is so great about nighttime VIIRS data for the detection and characterization of combustion sources?," in Proceedings of the Asia-Pacific Advanced Network, 2013, vol. 35, no. 0, p. 33, doi: 10.7125/apan.35.5.

X. Chen and W. D. Nordhaus, "VIIRS nighttime lights in the estimation of cross-sectional and time-series GDP," Remote Sens., vol. 11, no. 9, pp. 1-11, 2019, doi: 10.3390/rs11091057.

R. Ramadhan, A. W. Wijayanto, and S. Pramana, "Geospatial big data approaches to estimate granular level poverty distribution in East Java, Indonesia using machine learning and deep learning regressions," in Proceedings of The International Conference on Data Science and Official Statistics, 2023(1), 2023, pp. 186-200, doi: https://doi.org/10.34123/icdsos.v2023i1.359.

A. W. Wijayanto, D. W. Triscowati, and A. H. Marsuhandi, "Maize field area detection in East Java, Indonesia: An integrated multispectral remote sensing and machine learning approach," ICITEE 2020 - Proc. 12th Int. Conf. Inf. Technol. Electr. Eng., pp. 168-173, 2020, doi: 10.1109/ICITEE49829.2020.9271683.

Y. Li, Z. Cao, H. Long, Y. Liu, and W. Li, "Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban-rural development: The case of Mu Us Sandy Land, China," J. Clean. Prod., vol. 142, pp. 697-715, Jan. 2017, doi: 10.1016/j.jclepro.2016.09.011.

Bo-Cai Gao, "NDWI A normalized difference water index for remote sensing of vegetation liquid water from space," Elsevier, vol. 266, no. April, Feb. 1996.

S. K. McFeeters, "The use of the normalized difference water index (NDWI) in the delineation of open water features," Int. J. Remote Sens., vol. 17, no. 7, pp. 1425-1432, 1996, doi: 10.1080/01431169608948714.

H. Krishna Karanam, "Study of normalized difference built-up (Ndbi) index in automatically mapping urban areas from landsat TM imagery," Int. J. Sci. Res. Rev., vol. 7, no. 1, pp. 1-8, 2018.

Y. Zha, J. Gao, and S. Ni, "Use of normalized difference built-up index in automatically mapping urban areas from TM imagery," Int. J. Remote Sens., vol. 24, no. 3, pp. 583-594, 2003, doi: 10.1080/01431160304987.

C. He, P. Shi, D. Xie, and Y. Zhao, "Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach," Remote Sens. Lett., vol. 1, no. 4, pp. 213-221, 2010, doi: 10.1080/01431161.2010.481681.

E. D. Meutia, M. Fikri, R. Munadi, and Yunida, "Analisis data citra satelit terra modis sebagai indikasi potensi ikan di wilayah kreung raya," KITEKRO J. Komputer, Teknol. Informasi, dan Elektro, vol. 7, no. 1, pp. 9-14, 2022.

J. P. Veefkind et al., "TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications," Remote Sens. Environ., vol. 120, no. 2012, pp. 70-83, 2012, doi: 10.1016/j.rse.2011.09.027.

R. D. Stephens and S. H. Cadle, "Remote sensing measurements of carbon monoxide emissions from on-road vehicles," J. Air Waste Manag. Assoc., vol. 41, no. 1, pp. 39-46, 1991, doi: 10.1080/10473289.1991.10466823.

C. Nistor, M. Virghileanu, and B. Mihai, "Monitoreo de la contaminacion por dioxido de nitrogeno (NO2) con imagenes satelitales Sentinel-5P en Europa durante el brote pandemico de coronavirus," no. 2, 2020.

R. Kurniawan, R. Hasabi, S. K. Wongsonadi, P. U. Gio, A. Purwanto, and B. Sumargo, "Examining the influence of congestion, industry, and green open space on air quality vulnerability in towards green development in Jakarta," Innov. Green Dev., vol. 4, no. 3, 2025, doi: 10.1016/j.igd.2025.100247.

K. Bakhsh, T. Akmal, T. Ahmad, and Q. Abbas, "Investigating the nexus among sulfur dioxide emission, energy consumption, and economic growth: empirical evidence from Pakistan," Environ. Sci. Pollut. Res., vol. 29, no. 5, pp. 7214-7224, 2022, doi: 10.1007/s11356-021-15898-9.

L. Shikwambana, P. Mhangara, and M. Kganyago, "Assessing the relationship between economic growth and emissions levels in south africa between 1994 and 2019," Sustain., vol. 13, no. 5, pp. 1-15, 2021, doi: 10.3390/su13052645.

M. Abrams, R. Crippen, and H. Fujisada, "ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD)," Remote Sens., vol. 12, no. 7, pp. 1-12, 2020, doi: 10.3390/rs12071156.

I. Elkhrachy, "Vertical accuracy assessment for SRTM and ASTER digital elevation models: A case study of Najran city, Saudi Arabia," Ain Shams Eng. J., vol. 9, no. 4, pp. 1807-1817, 2018, doi: 10.1016/j.asej.2017.01.007.

L. W. Yeow, R. Low, Y. X. Tan, and L. Cheah, "Point-of-interest (Poi) data validation methods: An urban case study," ISPRS Int. J. Geo-Information, vol. 10, no. 11, 2021, doi: 10.3390/ijgi10110735.

A. P. Utomo et al., "Regresi robust untuk memodelkan pendapatan usaha industri makanan non-makloon berskala mikro dan kecil di Jawa Barat tahun 2013," pp. 63-74, 2013.

Soemartini, Pencilan (Outliers). Jatinangor: Universitas Padjajaran, 2007.

J. Yohai, D. B. Aires, and C. E. Ma, "High breakdown-point and high efficiency robust estimates for regression," vol. 15, no. 2, pp. 642-656, 2014.

J. Raymaekers and P. J. Rousseeuw, "Transforming variables to central normality: Machine learning," Mach. Learn., vol. 113, no. 8, pp. 4953-4975, 2024, doi: 10.1007/s10994-021-05960-5.

Sugiyono, Metode Penelitian Kuantitatif, Kualitatif dan R&D. 2011.

W. Lin, "Temporal and spatial analysis of integrated energy and environment efficiency in China based on a green GDP index," pp. 1376-1390, 2011, doi: 10.3390/en4091376.

Y. Wang and Y. Chen, "Using VPI to measure poverty-stricken villages in China," Soc. Indic. Res., no. June, 2016, doi: 10.1007/s11205-016-1391-5.

S. R. Putri and A. W. Wijayanto, "Developing relative spatial poverty index using integrated remote sensing and geospatial big data approach_: A case study of East Java , Indonesia," 2024.

R. Ramadhan and A. W. Wijayanto, "Integrating satellite imageries and multiple geospatial big data for granular mapping of spatial distribution of the human development index in East Java , Indonesia," in Proceedings of The International Conference on Data Science and Official Statistics, 2023, vol. 2023(1), pp. 274-295, doi: https://doi.org/10.34123/icdsos.v2023i1.369.

F. Kartiasih, N. D. Nachrowi, I. D. Gede, and K. Wisana, "Information technology for development inequalities of Indonesia ' s regional digital development and its association with socioeconomic characteristics_: a spatial and multivariate analysis," Inf. Technol. Dev., vol. 0, no. 0, pp. 1-30, 2022, doi: 10.1080/02681102.2022.2110556.

A. Cartone and P. Postiglione, "Principal component analysis for geographical data_: the role of spatial effects in the definition of composite indicators Principal component analysis for geographical data_: the role of spatial effects in the de fi nition of composite," Spat. Econ. Anal., vol. 0, no. 0, pp. 1-22, 2020, doi: 10.1080/17421772.2020.1775876.

Y. Nurmasari and A. W. Wijayanto, "Oil palm plantation detection in Indonesia using sentinel-2 and landsat-8 optical satellite imagery (Case Study: Rokan Hulu Regency, Riau Province)," Int. J. Remote Sens. Earth Sci., vol. 18, no. 1, p. 1, 2021, doi: 10.30536/j.ijreses.2021.v18.a3537.

D. Coondoo, I. Researcher, and A. Majumder, "District-level poverty estimation_: A proposed method District-level poverty estimation_: a proposed method," no. October 2014, 2011, doi: 10.1080/02664763.2010.547568.

L. Mladkova, V. Peni, and R. Va, "Forest soil acidification assessment using principal component analysis and geostatistics," vol. 140, pp. 374-382, 2007, doi: 10.1016/j.geoderma.2007.04.018.

F. J. Riggins, "The digital divide_: Current and future research directions," vol. 6, no. 12, 2005, doi: 10.17705/1jais.00074.

Downloads

Published

2025-12-31

How to Cite

Rifqi Ramadhan, I Made Satria Ambara, Taufiq Agung Kurniawan, Fitri Kartiasih, Raden Muaz Munim, & Somethea Buoy. (2025). Estimating Economic Activity Using Geospatial Big Data in East Java, Indonesia: Relative Spatial GDP Index Approach. Jurnal Aplikasi Statistika & Komputasi Statistik, 17(2), 189–210. https://doi.org/10.34123/jurnalasks.v17i2.856