Integrating Multi-Criteria Decision Analysis and Machine Learning for Fine-Scale Mapping of Safe Drinking Water Access in Bengkulu Province, Indonesia
DOI:
https://doi.org/10.34123/jurnalasks.v17i2.866Abstract
Introduction/Main Objectives: This study aims to develop a 1 km × 1 km level estimation model of safe drinking water access using multisource satellite imagery, point of interest (POI), and aquifer productivity maps. Background Problems: There is a lack of alternative data sources for estimating safe drinking water access that are cost-, time-, and labor-efficient while maintaining high accuracy and frequent updates. Novelty: This study integrates Multi-Criteria Decision Analysis (MCDA) and machine learning methods to estimate and map safe drinking water access at a 1 km × 1 km resolution. Research Methods: Multisource geospatial data were used to construct the model. Within the MCDA approach, the Weighted Product Model (WPM) was employed to develop the Safe Drinking Water Access Index (SDWAI). Meanwhile, the machine learning regression algorithms Adaptive Boosting Regression (ABR) and Gradient Boosting Regression (GBR) were applied to estimate safe drinking water access at a fine spatial scale. The study was conducted in Bengkulu Province, Indonesia. Finding/Results: WPM yielded the best MCDA performance ( = 0.3699, RMSE = 10.6566, MAE = 9.5427, MAPE = 0.1405), while ABR showed the best machine learning performance ( = 0.4361, RMSE = 10.0813, MAE = 8.3750, MAPE = 0.1333).
Downloads
References
V. Sheel, A. Kotwal, N. Dumka, V. Sharma, R. Kumar, and V. Tyagi, "Water as a social determinant of health: bringing policies into action," J Glob Health Rep, vol. 8, 2024, doi: 10.29392/001c.92160.
G. Mujtaba, M. U. H. Shah, A. Hai, M. Daud, and M. Hayat, "A holistic approach to embracing the United Nation's Sustainable Development Goal (SDG-6) towards water security in Pakistan," Jan. 01, 2024, Elsevier Ltd. doi: 10.1016/j.jwpe.2023.104691.
J. Abellan and J. A. Alonso, "Promoting global access to water and sanitation: A supply and demand perspective," Water Resour Econ, vol. 38, Apr. 2022, doi: 10.1016/j.wre.2022.100194.
A. Umami, H. Sukmana, E. A. Wikurendra, and E. Paulik, "A review on water management issues: potential and challenges in Indonesia," Sustain Water Resour Manag, vol. 8, no. 3, Jun. 2022, doi: 10.1007/s40899-022-00648-7.
M. L. Crouch, H. E. Jacobs, and V. L. Speight, "Defining domestic water consumption based on personal water use activities," Aqua Water Infrastructure, Ecosystems and Society, vol. 70, no. 7, pp. 1002-1011, Nov. 2021, doi: 10.2166/aqua.2021.056.
G. E. Adjovu, H. Stephen, D. James, and S. Ahmad, "Overview of the application of remote sensing in effective monitoring of water quality parameters," Apr. 01, 2023, MDPI. doi: 10.3390/rs15071938.
Kementerian Kesehatan, "Peraturan menteri kesehatan Republik Indonesia Nomor 492/Menkes/PER/IV/2010 tentang persyaratan kualitas air minum," Jakarta, 2010.
Kementerian Kesehatan, "Peraturan menteri kesehatan Republik Indonesia Nomor 2 Tahun 2023 tentang peraturan pelaksanaan peraturan pemerintah Nomor 66 Tahun 2014 tentang kesehatan lingkungan," Jakarta, 2023. [Online]. Available: www.peraturan.go.id
WHO and UNICEF, Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. Geneva: World Health Organization and the United Nations Children's Fund, 2017.
WHO and UNICEF, Safely managed drinking water. Geneva: World Health Organization and the United Nations Children's Fund, 2017.
J. D. Tetteh et al., "Spatial heterogeneity in drinking water sources in the Greater Accra Metropolitan Area (GAMA), Ghana," Popul Environ, vol. 44, no. 1-2, pp. 46-76, Sep. 2022, doi: 10.1007/s11111-022-00407-y.
L. Ho, A. Alonso, M. A. Eurie Forio, M. Vanclooster, and P. L. M. Goethals, "Water research in support of the Sustainable Development Goal 6: A case study in Belgium," Dec. 20, 2020, Elsevier Ltd. doi: 10.1016/j.jclepro.2020.124082.
UNICEF, "WASH Acts 2023," 2024.
Kementerian PUPR, Kementerian PPN/Bappenas, USAID IUWASH PLUS, and SECO, "Peta jalan peningkatan kapasitas sumber daya manusia BUMD air minum," Jakarta, 2021.
B. Ajisegiri et al., "Geo-spatial modeling of access to water and sanitation in Nigeria," Journal of Water Sanitation and Hygiene for Development, vol. 9, no. 2, pp. 258-280, Jun. 2019, doi: 10.2166/washdev.2019.089.
P. D. T. dan T. Kementerian Desa, "Peraturan menteri desa, pembangunan daerah tertinggal, dan transmigrasi Nomor 8 Tahun 2022 tentang prioritas penggunaan dana desa Tahun 2023," Jakarta, 2022.
Hasbudin, W. O. Aswati, and Nirwana, "Evaluasi pengelolaan dana desa di Desa Bone Kancintala Kecamatan Bone Kabupaten Muna," Jurnal Akuntansi dan Keuangan (JAK), vol. 6, no. 1, 2021, [Online]. Available: http://ojs.uho.ac.id/index.php/jak-uho/issue/archive
Kementerian PPN/Bappenas, Pokja PPAS, and USAID IUWASH PLUS, "Meta data target indikator air minum:: Kupas Tuntas SDGs 6.1 Air Minum," Jakarta, 2021.
BPS Kabupaten Tanjung Jabung Timur, "Statistik kesejahteraan rakyat Kabupaten Tanjung Jabung Timur 2022," Muara Sabak, 2022. [Online]. Available: www.freepik.com
S. D. Kurniawan et al., Big data: Mengenal big data & implementasinya di berbagai bidang. Jambi: PT. Sonpedia Publishing Indonesia, 2024. [Online]. Available: www.buku.sonpedia.com
C. Abesser and M. Lewis, "A semi-quantitative technique for mapping potential aquifer productivity on the national scale: example of England and Wales (UK)," Hydrogeol J, vol. 23, no. 8, pp. 1677-1694, Dec. 2015, doi: 10.1007/s10040-015-1295-5.
M. C. de O. Silva, R. S. Vasconcelos, and J. A. Cirilo, "Risk mapping of water supply and sanitary sewage systems in a City in the Brazilian semi-arid region using GIS-MCDA," Water (Switzerland), vol. 14, no. 20, Oct. 2022, doi: 10.3390/w14203251.
M. Guo, Q. Zhang, X. Liao, F. Y. Chen, and D. D. Zeng, "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega (Westport), vol. 101, Jun. 2021, doi: 10.1016/j.omega.2020.102263.
C. M. Bishop, Pattern recognition and machine learning. New York: Springer, 2006.
M. J. de S. Cordao, I. A. A. Rufino, P. Barros Ramalho Alves, and M. N. M. Barros Filho, "Water shortage risk mapping: a GIS-MCDA approach for a medium-sized city in the Brazilian semi-arid region," Urban Water J, vol. 17, no. 7, pp. 642-655, Aug. 2020, doi: 10.1080/1573062X.2020.1804596.
M. Radulovic et al., "Assessment of groundwater potential zones using GIS and fuzzy AHP techniques-A case study of the titel municipality (Northern Serbia)," ISPRS Int J Geoinf, vol. 11, no. 4, Apr. 2022, doi: 10.3390/ijgi11040257.
A. S. Suryani, "Persepsi masyarakat dalam pemanfaatan air bersih (Studi kasus masyarakat pinggir sungai di Palembang)," Aspirasi, vol. 7, no. 1, pp. 33-48, 2016, [Online]. Available: www.koran-sindo.
B. Guo et al., "Estimating socio-economic parameters via machine learning methods using luojia1-01 nighttime light remotely sensed images at multiple scales of China in 2018," IEEE Access, vol. 9, pp. 34352-34365, 2021, doi: 10.1109/ACCESS.2021.3059865.
Y. Zheng, Q. Zhou, Y. He, C. Wang, X. Wang, and H. Wang, "An optimized approach for extracting urban land based on log-transformed dmsp-ols nighttime light, ndvi, and ndwi," Remote Sens (Basel), vol. 13, no. 4, pp. 1-22, Feb. 2021, doi: 10.3390/rs13040766.
Y. Wang et al., "The impact of carbon monoxide on years of life lost and modified effect by individual- and city-level characteristics: Evidence from a nationwide time-series study in China," Ecotoxicol Environ Saf, vol. 210, Mar. 2021, doi: 10.1016/j.ecoenv.2020.111884.
E. A. Adams and S. L. Smiley, "Urban-rural water access inequalities in Malawi: implications for monitoring the Sustainable Development Goals," Nat Resour Forum, vol. 42, no. 4, pp. 217-226, Nov. 2018, doi: 10.1111/1477-8947.12150.
T. Prasetiawan, A. Nastiti, and B. S. Muntalif, "'Bad' piped water and other perceptual drivers of bottled water consumption in Indonesia," Wiley Interdisciplinary Reviews: Water, vol. 4, no. 4, Jul. 2017, doi: 10.1002/WAT2.1219.
N. Dejito et al., "Mapping access to water and sanitation in Colombia using publicly accessible satellite imagery, crowd-sourced geospatial information and randomrorests," in 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Nov. 2021.
K. Shi, Z. Chang, Z. Chen, J. Wu, and B. Yu, "Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: A case study of Chongqing, China," J Clean Prod, vol. 255, May 2020, doi: 10.1016/j.jclepro.2020.120245.
H. E. Winzeler, P. R. Owens, Q. D. Read, Z. Libohova, A. Ashworth, and T. Sauer, "Topographic wetness index as a proxy for soil moisture in a Hillslope Catena: Flow algorithms and map generalization," Land (Basel), vol. 11, no. 11, 2022, doi: 10.3390/land11112018.
P. Rao, P. Tassinari, and D. Torreggiani, "Exploring the land-use urban heat island nexus under climate change conditions using machine learning approach: A spatio-temporal analysis of remotely sensed data," Heliyon, vol. 9, no. 8, Aug. 2023, doi: 10.1016/j.heliyon.2023.e18423.
Y. Bin Cai, Z. J. Wu, Y. H. Chen, L. Wu, and W. Bin Pan, "Investigate the difference of cooling effect between water bodies and green spaces: The study of fuzhou, China," Water (Switzerland), vol. 14, no. 9, May 2022, doi: 10.3390/w14091471.
S. Mishra and D. R. Mishra, "Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters," Remote Sens Environ, vol. 117, pp. 394-406, Feb. 2012, doi: 10.1016/j.rse.2011.10.016.
I. Yeo and R. A. Johnson, "A new family of power transformations to improve normality or symmetry," Biometrika, vol. 87, no. 4, pp. 954-959, 2000, [Online]. Available: http://biomet.oxfordjournals.org/
J. Raymaekers and P. J. Rousseeuw, "Transforming variables to central normality," Mach Learn, vol. 113, no. 8, pp. 4953-4975, Aug. 2021, doi: 10.1007/s10994-021-05960-5.
Sugiyono, Metode penelitian pendidikan pendekatan kuantitatif, kualitatif dan R&D. Alfabeta, 2010.
Ch. M. Rao and K. Venkatasubbaiah, "Application of WSM, WPM and TOPSIS methods for the optimization of multiple responses," International Journal of Hybrid Information Technology, vol. 9, no. 10, pp. 59-72, Oct. 2016, doi: 10.14257/ijhit.2016.9.10.07.
N. U. Moroff, E. Kurt, and J. Kamphues, "Machine Learning and Statistics: A study for assessing innovative demand forecasting models," in Procedia Computer Science, Elsevier B.V., 2021, pp. 40-49. doi: 10.1016/j.procs.2021.01.127.
R. D. Stephens and S. H. Cadle, "Remote sensing measurements of carbon monoxide emissions from on-road vehicles," J Air Waste Manage Assoc, vol. 41, no. 1, pp. 39-46, 1991, doi: 10.1080/10473289.1991.10466823.
A. Botchkarev, "Evaluating performance of regression machine learning models using multiple error metrics in Azure Machine Learning Studio," SSRN Electronic Journal, 2018, [Online]. Available: https://ssrn.com/abstract=3177507













